
MSRC-5000SRD
Appendix D

Support and Rationale Document

for the

Software Communications Architecture Specification

APPENDIX D: NETWORKING SUPPORT AND RATIONALE

June 30, 2000

MSRC-5000SRD
Appendix D

MSRC-5000SRD
Appendix D

D-i

Table of Contents

Section Title Page

1 Introduction.. D-1-1
2 Networking Overview.. D-2-1

2.1 Networking Working Group Charter ... D-2-2
2.2 Networking Working Group Problem Statement... D-2-2
2.3 Networking Working Group Analysis Process .. D-2-2
2.4 Networking Working Group Decision Process .. D-2-3
2.5 Networking Working Group Top-Level Definitions.. D-2-3
2.6 Networking Working Group Analysis ... D-2-4

2.6.1 Criteria Derivation... D-2-4
2.6.2 Networking API Service Definition Analysis ... D-2-8
2.6.3 Transfer Mechanism Analysis ... D-2-15
2.6.4 Additional Analysis Information ... D-2-20

3 Supplemental Data on Options Considered ... D-3-1
3.1 Networking API Service Definition Options ... D-3-1

3.1.1 Option 1 – Small Networking API Service Definition Using Name/Value Pairs D-3-1
3.1.2 Option 2 – Super Networking API .. D-3-14
3.1.3 Option 3 - Commercial Model Networking API Service Definition............................. D-3-24
3.1.4 Option 4 - Commercial Model with Inheritance Networking API Service Definition.. D-3-33
3.1.5 Option 4 - GloMo Rooftop API based Networking API Service Definition................. D-3-44

3.2 Networking API Transfer Mechanism Options.. D-3-54
3.2.1 Option 1 - CORBA, CORBA, CORBA, CORBA... D-3-54
3.2.2 Option 2- CORBA, CORBA, Non-CORBA, Non-CORBA ... D-3-65
3.2.3 Option 3 – CORBA, CORBA, CORBA via reference, CORBA via reference............. D-3-79
3.2.4 Option 4 – CORBA, CORBA, STREAMS, STREAMS... D-3-89

MSRC-5000SRD
Appendix D

D-ii

MSRC-5000SRD
Appendix D

D-1-1

1 INTRODUCTION
The SCAS does not contain a major section on the requirements and design for the networking
architecture, hence the body of the SRD contains no specific section on rationales for networking
decisions. Instead, networking is embodied in the requirements contained in the software section
of the SCAS (section 3), which are accordingly addressed in section 3 of the SRD.

The material contained in section 2 of this appendix describes how the Networking Working
Group evaluated various options for a networking architecture and arrived at the overall
implementation of the Networking API Transfer Mechanisms and Networking API Service
Definitions.

Section 3 of this appendix contains additional details of the analyses of the networking options.

MSRC-5000SRD
Appendix D

D-1-2

MSRC-5000SRD
Appendix D

D-2-1

2 NETWORKING OVERVIEW
The MSRC divided the Step 2A work among multiple Integrated Product Teams (IPTs). The
Architecture IPT was defined to work the specific task issues related to the architecture. Working
groups were chartered by the Architecture IPT to complete the analysis and definition of the
JTRS architecture. Key among these was the Core Framework (CF), Security, Use Case, and
Networking Working Groups (NWG). The charter of the NWG was the development of
standard interfaces within the JTRS that would allow external protocol resources to communicate
as distributed resources. The JTRS paradigm for this distributed component interoperability
required that the communication between the layers of the generic OSI network stack (see Figure
1) had to be revisited.

Network (Internet)

Link

Presentation

Network (Intranet)

Transport

Session

Application
Application

Process

Physical 1

2

3a

4

5

6

7

3b

Figure 1. OSI Stack
This meant that the external network protocol stack would have to be capable of being
distributed within the Joint Tactical Radio as shown in Figure 2. The capability to effectively
distribute the stack depends on the ability to define an interface (service definition) and
appropriate transfer mechanism between the distributed network stack entities. The JTRS
Operational Requirements Document (ORD) factors of interoperability, performance, security,
and portability were considered the most important requirements in determining the process,
rationale and final outcome of a definition for effectively distributing these interfaces within a
JTRS.

Processor #2

Network (Internet)

Presentation

Transport

Session

Application

Application
Process

Link

Network (Intranet)

Physical 1

23a

4

5

6

7

3b

Service Definition
&

Transfer Mechanism

Figure 2. Distributed OSI Stack

MSRC-5000SRD
Appendix D

D-2-2

The members began work in December 1999 to set tasks for the working group. This was
followed by the start of teleconference meetings in January of 2000. Initial discussions started
directly from the Architecture Definition Report and led to the development of a Networking
Application Programming Interface (API) that attempted to abstract the functionality required at
the Modem, Link, and Network layer into a small group of operations required for status,
control, and data flow. This Networking API was considered the first definition of an
Networking API Service Definition (NSD) and followed from the work of the GloMo APIs.
Work then began on developing alternates for the Networking API Transfer Mechanism (NTM).
As part of this effort it became apparent that the NTM must cover four separate areas. These
were: 1) resource set up and initialization, 2) non real-time resource control, 3) real-time
resource control, and 4) data flow.

After further discussions both within the Networking Working Group and externally with the
Joint Program Office and other members of the MSRC during Internal Program Review (IPR)
#3, the team instituted a rigorous process for analysis of both the NSD and NTM alternatives.
The process involved the framing of the problem to be solved, derivation of the Figures of Merit
(FOM), criteria for evaluating selected options for the NSDs and NTMs, selection and analysis
of options, and then review, rating, and selection of the best approaches.

2.1 NETWORKING WORKING GROUP CHARTER
The charter of the NWG was the development of standard interfaces within the JTRS that would
allow external protocol resources to communicate as distributed resources.

2.2 NETWORKING WORKING GROUP PROBLEM STATEMENT
The problem statement adopted by the NWG is shown below:

Determine an effective interface definition for distributing the JTRS network communication
protocol stack components within a Joint Tactical Radio System that takes into account
interoperability, performance, security, extensibility, and portability. This definition should take
into account the Networking API Service Definition, the Networking API Transfer Mechanism,
where the Networking API Service Definitions and Transfer Mechanisms are documented, and
how configuration control for the Networking API Service Definitions and Transfer Mechanisms
will be managed. This includes how the Networking API Transfer Mechanism(s) and the
Networking API Service Definition(s) support the ORD's concept of component interoperability
and future plug and play capability.

2.3 NETWORKING WORKING GROUP ANALYSIS PROCESS
The following diagram details the Networking Working Group analysis and task process for the
development of networking components for the JTRS SCA.

MSRC-5000SRD
Appendix D

D-2-3

 Transfer Mechanism
Alternate
Format

Choose
 Approach

Review/Rate
Alternates

Complete
 Documentation

 & Inputs to SCA/SRO

Complete
 System
Analysis

Complete
 Security Review

Define
 Alternates

Define
 the

 Problem

Decide
 On the

Trade Areas

Define
 Evaluation

 Mechanisms

Define Format
 For Alternate

 Definitions

Define
 Evaluation

 Criteria

Problem
Space

Transfer
Mechanism

Service
Definition

Transfer
Mechanism

 FOM

Service
Definition

FOM

 Transfer Mechanism
Evaluation
 Questions

Service Definition
 Evaluation
 Questions

Transfer
Mechanism
Alternate

Service
Definition
Alternates

Service Definition
Alternate
 Format

User
Input

ORD
Requirements

Technical
Experience

Figure 3. Networking Working Group Analysis Process

2.4 NETWORKING WORKING GROUP DECISION PROCESS

Govt.
Rep.

NWG
Govt. Ntwk
fdbk WG

JPO

MSRC
Arch. IPT

Figure 4. Networking Working Group Decision Process

2.5 NETWORKING WORKING GROUP TOP-LEVEL DEFINITIONS
In the course of the work of developing a suitable definition, a set of terms was defined to clarify
the meaning of references for the NWG and for discussions with others. These terms are
provided below to assist with the understanding these NWG analyses.

Networking API: The interface definition between a JTRS waveform protocol layer service
provider and a service user. It covers the JTRS waveform Modem, Link, and Network interfaces.
For example, a Modem API is an interface between a modem and the application using it,
whether that application is a layer of an OSI networking protocol, a voice application, or some
other application.

MSRC-5000SRD
Appendix D

D-2-4

Networking API Instance: A Networking API Instance is a coupling of a Networking API
Service Definition and a Networking API Transfer Mechanism for an implementation. The
Networking API Instance provides the mechanism for distributing the waveform layers within a
single processor or across different processors. (Note that Networking API and Networking API
Instance are often used interchangeably.)

Networking API Service Definition (NSD): The service definition for a waveform protocol layer
details the operations (primitives), the attributes (variables), their representation (structures,
types, formats) and its behavior.

Networking API Transfer Mechanism (NTM): The transfer mechanism provides the
communication between the JTRS waveform protocol layer service provider and a service user.
CORBA and STREAMS are examples of transfer mechanisms.

Waveform: Waveform defines the communications between two JTRS radios and includes
modulation as well as OSI protocols layers 2-4.

The relationship of the Networking APIs, NSD, and NTM to the External Network Protocols and
the SCA JTR is shown in Figure 3. The system communicates with peer systems over wireless
and wireline protocols. Note that JTRS is called the SCA Radio System in the figure.

Peer
Radio

System

SCA
Radio

System

Peer
Host

System

Peer
SCA
Radio

System

ModemDevice

LinkResource

NetworkResource

Link
NSD

Modem
NSD

NAPI
Transfer

Mechanism
Protocol
Entities

Typically each external networking protocol will
be implemented by a different set of one or more

protocol entities.

A. External Networking

External
Networking

Protocols

Typically
CORBA IDL,
GIOP, & IIOP

Figure 5. External Network Protocols and SCA Support

2.6 NETWORKING WORKING GROUP ANALYSIS

2.6.1 Criteria Derivation
Table 1 lists sections of the Joint Tactical Radio System (JTRS) Operational Requirements
Document (ORD) that are relevant to Networking APIs. The Networking API requirements
were then derived from these relevant sections. (Both the currently approved ORD, 23 Mar 98,
and a recent draft ORD, 9 Feb 00, were examined with no differences in the derived Networking
API requirements.) Each derived Networking API requirement is categorized according to the

MSRC-5000SRD
Appendix D

D-2-5

category of the JTRS ORD section it was derived from and whether it is a primary or secondary
intent of the JTRS ORD section: Key Performance Parameter (KPP) primary, Threshold primary,
Objective, KPP secondary, Threshold secondary, or Recommendations (other than KPP,
Threshold, or Objective).

If a Networking API requirement can be derived from multiple ORD sections, then it is
categorized according to the highest categorized source section according to the order listed
above. Table 2 lists the derived Networking API requirements, their category, and a cross
reference to the source ORD sections and their categories.

JTRS ORD paragraph 4.a.(1)(b) calls out an “an internal growth capability through an open
systems architecture approach in compliance with the Joint Technical Architecture” (JTA) that
”shall be modular, scaleable, and flexible.” The JTA calls out the Defense Information
Infrastructure Common Operating Environment (DII COE) as a requirement. The DII COE has
requirements for Application Programming Interface (API) standards for applications (namely
Unix Sockets and Windows WINSock). However, the DII COE does not have an equivalent set
of API standards for wireless and networking protocols at lower layers. A modular, wireless,
networking, open systems architecture requires such APIs. Thus, the need for Networking APIs
at these lower layers was identified during JTRS Step 1.

A Networking API instance consists of two elements: a Networking API Service Definition and
a Networking API Transfer Mechanism. There are multiple alternatives for each of these two
elements. The derived Networking API requirements can be used as figure of merit (FOM)
criteria to analyze and evaluate the different Networking API alternatives.

Table 3 allocates the derived Networking API requirements to the Networking API Service
Definition and Networking API Transfer Mechanisms. The derived Networking API
requirement category is listed. Evaluation weights were developed using the derived
Networking API requirement category with adjustments based upon our Networking Integrated
Product Team (IPT) experience.

Table 1. JTRS ORD and Derived Networking API Requirements.
JTRS ORD Sections Relevant to Networking
APIs

Derived Networking API Requirements Category

• Support legacy networking and non-
networking waveforms

K4.a.(1)(a) The JTRS architecture shall
be capable of supporting secure and non-secure
voice, video and data communications using
multiple narrow-band and wide-band waveforms
for KPP, threshold, and objective at Tables 1
and 2, including future waveforms as they are
developed.

• Support future networking and non-
networking waveforms

T

• Support portability
• Provide networking APIs equivalent to

application APIs specified by DII COE
• Support component interoperability

K4.a.(1)(b) The JTRS program shall
provide an internal growth capability through an
open systems architecture approach in
compliance with the Joint Technical
Architecture, and shall be modular, scaleable,
and flexible.

• Support extensibility K
secondary

4.a.(1)(c) Each JTR set shall provide
the operator with the ability to load and/or
reconfigure its modes/capabilities (via software)
while in operational environment.

• Support Networking API transfer mechanism
dynamic construction and deconstruction

K

4.a.(2)(i) Shall provide for INFOSEC
and protection of data in Secret High network

• Support Security T

MSRC-5000SRD
Appendix D

D-2-6

JTRS ORD Sections Relevant to Networking
APIs

Derived Networking API Requirements Category

4.a.(2)(j) Each JTR set shall interface
with and support functions of cryptographic
systems listed in Annex D.

• Support security T

• Support networking waveforms T4.a.(3) The JTRS shall be capable
of providing scaleable networking services for
connected RF (over the air) networks, host
networks, and hybrid networks

• Need to adapt to commercial trends (since
many host networks will evolve as commercial
trends evolve)

T
secondary

• Need performance (efficiency) to support
waveforms, including high speed legacy
waveforms

T4.a.(3)(i) The JTRS network shall
have the capacity to meet the information flow
of waveforms/ capabilities as specified at Tables
1 and 2 and meet the information flow required
by new capabilities and latency near zero.

• Need performance (efficiency & latency) to
support waveforms including high speed new
waveforms

O

5.c.(1) JTR must be easily
maintainable and operable, incorporating the
principles of modularity and commonality.

• Need to have low life cycle costs
• Support portability
• Support extensibility
• Support reuse at same layers
• Support component interoperability

R

5.h.(1) The JTR acquisition will
adhere to the JTA in identifying the standards
and guidelines.

• JTA calls out DII COE has API requirements
for application protocols

R

5.h.(2) Only NSA endorsed and
approved security products, techniques, and
protective services shall be used to secure
classified communications.

• Support Security R

7.a The system shall be
developed incrementally providing increased
capabilities as it matures.

• Support SCA incremental releases
• Support Extensibility

R

1.a. 5th sentence The JTR must operate with
legacy equipment ... and incorporate new
waveforms as they are developed.

• Support legacy and future waveforms
• Need to adapt to commercial trends
• Support extensibility

R

1.a. 6th sentence The family of radios will be
scaleable by virtue of form, fit and cost to meet
specific user operational needs.

• Need to be low-cost
• Support portability
• Support component interoperability

R

1.a. 7th sentence The JTR will also provide
growth capability through an open system
architecture that enables technology insertion
through evolutionary acquisition or P3I.

• Support future waveforms
• Need to adapt to commercial trends

R

1.a. 8th sentence The JTR will be capable of
higher channel data throughput rates.

• Support performance needed for high
throughput waveforms

R

• Need to be low-cost R1.d. 1st sentence The JTR will be supported
by commercial sources and practices to provide
the most cost effective solution. • Need to obtain commercial acceptance R

Note: K = KPP; T = Threshold but not K; O = Objective, R = Other ORD Recommendations

The following table depicts the Networking API requirements, associated categories, and source
sections from the JTRS ORD.

MSRC-5000SRD
Appendix D

D-2-7

Table 2. Networking API Requirements, Categories, and Source ORD Sections
Networking API Derived Requirement Networking

API
Category

Source ORD Section Source ORD
Category

4.a.(1)(b) KNeed for Networking APIs K
5.h.(1) R
4.a.(1)(b) K
5.c.(1) R

Support Portability K

1.a. 5th sentence R
4.a.(1)(a) T
4.a.(3) T

Support New Waveforms T

1.a. 7th sentence R
4.a.(1)(a) KSupport Legacy Waveforms K
4.a.(3) T
4.a.(3) (efficiency) T
4.a.(3) (latency) O

Support Performance T

1.a. 8th sentence R
4.a.(1)(b) K (secondary)
5.c.(1) R

Support Extensibility K (secondary)

7.a. R
Support Reuse at Same Layer R 5.c.(1) R
Support Dynamic Construction/ Deconstruction K 4.a.(1)(c) K

4.a.(1)(b) K
5.c.(1) R

Support Component Interoperability K

1.a. 5th sentence R
5.c.(1) R
1.a. 5th sentence R

Support Low-Cost R

1.d. 1st sentence R
Foster Commercial Acceptance R 1.d. 1st sentence R

4.a.(2)(I) T
4.a.(2)(j) T

Support Security T

5.h.(2) R
4.a.(3) T (secondary)Adapt To Commercial Trends T (secondary)
1.a. 7th sentence R

Support SCA R 7.a. R

MSRC-5000SRD
Appendix D

D-2-8

Table 3. Deriving the Weighting of the Evaluation Criteria
Allocation to Networking API
Service Definition

Allocation to Networking
API Transfer Mechanism

Highest
Category

Weighting Value
(Note 1)

Support Portability Support Portability K 20% (Note 2)
Support New Waveforms not applicable T 10%
Support Legacy Waveforms not applicable K 15%
not applicable Support new & legacy

waveforms
K 15% (Note 3)

Support Performance Support Performance T 10% (service)
15% (transfer) (Note 4)

Support Extensibility Support Extensibility K (second-ary) 5%
Support Reuse at Same Layer not applicable R 5%
not applicable Support Dynamic

Construction/ Deconstruction
K 10% (Note 5)

Support Component
Interoperability

Support Component
Interoperability

K 15%

Support Low-Cost Support Low-Cost R 10% (Note 6)
Foster Commercial Acceptance Foster Commercial

Acceptance
R 5%

Support Security Support Security T Binary (Note 7)
Adapt To Commercial Trends Adapt To Commercial Trends R 5%
Support SCA Support SCA R Binary (Note 8)

Note 1: Preliminary weight assignments: K (primary rqmt) = 15%; T (primary rqmt) = 10%; K & T
secondary requirements = 5%; and O & R = 5%.

Note 2: Increase weight by 5% due to importance of portability as rationale behind creating JTRS to
reduce efforts of creating & using waveforms.

Note 3: Combined legacy and new waveform requirements for transfer mechanism analysis since this area
is impacted much more by service definition choices

Note 4: Increased weight transfer due to importance of transfer on performance.

Note 5: Decreased weight transfer to support increases discussed in notes 2 and 4.

Note 6: Increase weight due to importance of cost to JTRS as a major program driver.

Note 7: Chose to make this a binary yes/no since NSA acceptance is a go/no-go.

Note 8: Chose to make this a binary yes/no since Networking APIs have to work within SCA framework.

2.6.2 Networking API Service Definition Analysis

2.6.2.1 Networking API Service Definition Criteria (Figures of Merit) and Ratings
(Note: the criteria numbers in the following tables refer to the detailed questions presented in
section 3 of this document. For example, criteria 6.1 (Waveform Portability) is treated in sections
3.1.n.6.1, where n refers to Service Definition Option n (1-4).)

MSRC-5000SRD
Appendix D

D-2-9

Table 4. Networking API Service Definition Figure Of Merit (FOM) Analysis
Criteria Weight Option 1 Option 2 Option 3 Option 4 Option 5

6.1 Waveform Portability 20% 9 3 9 9 9
6.2 Ability to support future
waveforms

10% 9 3 9 9 9

6.3 Ability to support legacy
waveforms

15% 9 9 9 9 9

6.4 Performance
(Efficiency/Latency)

10% 3 3 9 9 9

6.5 Extensible 5% 9 1 9 9 9
6.6 Networking API Re-use at
Same Layer

5% 3 9 1 3 3

6.7 Component Interoperability
(Component plug & play)

15% 9 9 9 9 9

6.8 Cost 10% 3 1 9 9 3

6.9 Commercial Acceptance 5% 3 1 3 3 3

6.10 Security binary
(1 or 0)

3 9 1 3 3

6.11 Ability to adapt to commercial
trends

5% 9 1 9 9 9

6.1.3 Impact to SCA binary
(1 or 0)

9 9 9 9 9

SCORE 100% 7.2 4.6 8.3 8.4 7.8

Waveform Portability Ability of waveform software/hardware to move from one JTRS platform to
another without modification (other than a potential recompile).

Future support Ability of the system to support future waveforms in a consistent manner (i.e.
that same manner as new waveforms are supported). This includes the ability
to support networking for multimedia services.

Legacy support Ability of the system to support existing waveforms (both networking and
non-networking) in a consistent manner (i.e. that same manner as new
waveforms are supported).

Performance Ability of the system to support high speed, high data, low latency waveforms.
Includes high data rate throughput and low command latency from red
processor to modem cards.

Extensible Ability of the architecture to be extended to support new waveform interfaces

and mechanisms.

Re-use Ability of the Networking API definition to be re-sued at the same layer, e.g.
use the same modem Networking API definition for multiple (different)
modems.

Component interoperability Ability of individual waveform components to be reused by other waveforms;
the ability of components to support plug and play.

Cost Protocol software entity development, maintenance, and porting cost (Higher
score corresponds to lower cost.)

MSRC-5000SRD
Appendix D

D-2-10

Commercial Acceptance Degree to which the architecture is acceptable to the commercial world.

Security Ability of the design to support the JTRS security architecture. This point is
considered binary in that the alternate will either support or not support the
JTRS security concept. *Difficulty in implementing with the alternate is
quantified under Cost.

Commercial Adaptability The ability of the architecture to adapt to emerging commercial networking
standards.

Support of Core Framework Compliance of the design to the Core Frame Architecture.

Ratings to Detailed Questions

The Combined Answers to the Detailed Questions are then Combined to yield a single 1, 3, or 9 value in the
Combined Evaluation Factor

Option 1 Option 2 Option 3 Option 4 Option 5

6.1.1 9 9 9 9 9
6.1.2 3 1 9 9 3
6.2.1 9 3 9 9 9
6.2.2 9 3 3 9 9
6.2.3 9 9 9 9 9
6.2.4 9 1 9 9 9
6.3.1 3 9 9 9 3
6.3.2 9 1 9 9 9
6.3.3 9 9 3 9 9
6.3.4 9 3 9 9 9
6.3.5 9 9 9 9 9
6.4.1 3 3 9 9 9
6.4.2 3 3 9 9 9
6.4.3 3 9 9 9 3
6.5.1 9 1 9 9 9
6.5.2 3 9 3 9 9
6.6.1 3 9 1 3 3
6.6.2 3 9 3 9 9
6.7.1 3 9 3 9 9
6.7.2 9 9 9 9 9
6.8.1 3 1 9 9 3
6.9.1 3 1 3 3 3
6.9.2 1 1 3 9 3

6.10.1 9
6.11.1 9 1 9 9 9

6.1.3.1 9 9 9 9 9
6.1.3.2 9 9 9 9 9

MSRC-5000SRD
Appendix D

D-2-11

2.6.2.2 Networking API Service Definition Options
The following sections provide summary information for the analysis that the NWG did for the
Networking API Service Definition. The group derived five options for the service definition
that cover the range of possible implementations and then analyzed each using questions
developed from the evaluation described in Section 2.6.2.1. The ratings of answers provided the
basis of the selection of the chosen option for the SCA.

2.6.2.2.1 Service Definition Option #1 Name/Value Pair
The following three sections summarize this option. For more detailed information regarding the
analysis of this option refer to section 3.1.1.

2.6.2.2.1.1 Description
This option provides a small service definition since it defines a fixed set of operations that all
Networking API Service Definitions could draw from. In particular, the Modem Networking
APIs could draw from a set of eight possible operations while the Link, Network, and Transport
Networking APIs could draw from a set of twelve possible operations. A small number of
operations helps to develop consistency between Networking API Service Definitions and
facilitates going from one waveform's service definition to another. Some of the operations can
be reused from the Core Framework Lifecycle Interface thus reducing the development effort
and possibly the implementation footprint required. This option defines a method of interface
configuration control, interface version identification, and interface negotiation through the use
of unique identifiers, such as CORBA's UUID. It was designed to give vendors and users great
freedom and flexibility in trading off performance, portability and cost drivers. It promotes open
interface standards for waveforms and allows customers to assess the impact of changes. Its
configuration control provides a mechanism for managing evolution and tracking changes. The
flexible service definition as well as the configuration control approach was modeled after the
same process that is used to specify and manage MIBs for SNMP and CMIP.

2.6.2.2.1.2 Architectural Considerations
This option requires the Architecture and Core Framework to provide a common mechanism to
identify the Networking API Service Definition Name/Value Pairs to insure networking
resources have a common interface.

2.6.2.2.1.3 Relative Strengths and Weaknesses
This option has the following strengths:

1. Relatively low implementation costs.

2. Easily extensible interfaces.

3. Flexible interfaces.

4. Most compatible option to the CF (can reuse the LifeCycle interface).

MSRC-5000SRD
Appendix D

D-2-12

This option has the following weaknesses:

1. High overhead (with impact on throughput) for the CORBA "Any" implementation of
name/value pairs as contrasted to other CORBA IDL mechanisms.

2. Higher maintenance costs with second level name/value pair definitions (as compared to
maintaining interfaces defined purely in IDL).

3. May not map to existing commercial API standards.

2.6.2.2.2 Service Definition Option #2 Super Networking API Service Definition
The following three sections summarize this option. For more detailed information regarding the
analysis of this option refer to section 3.1.2.

2.6.2.2.2.1 Description
The Super Networking API Service Definition is a term used to describe the goal of defining a
single universal interface for all waveform applications. Each level; Network, Link, and Modem
would have its own Super Networking API Service Definition and all JTRS compliant
applications would use these Networking API Service Definitions when crossing these OSI
boundaries. Using the Super Networking API Service Definition approach, a single interface for
each layer of the network stack would be established. This interface would have to be robust
enough to support all existing waveforms and all future waveforms targeted for the JTRS product
line. The Super Networking API Service Definition is hard, fast and well defined, meaning all
interfaces would have a defined data type. The only way to change a Super Networking API
service Definition would be to update the interface with each revision of the SCA. New
waveforms would be forced to operate within the boundaries of the existing Networking API
Service Definitions.

With respect to the Link and Network the Super Networking API Service Definition approach
may meet the needs of the JTRS user community. The utility of the Super Networking API
Service Definition approach with respect to the modem interface is questionable.

The Modem Super Networking API Service Definition presents several problems:

1. There are a variety of modem products available. The configuration and control
interfaces required by the Link layer software to ensure an orderly flow of data are often
low-latency interfaces and unique to each hardware device.

2. There are a variety of waveforms that need support. The Modem Super Networking API
Service Definition will most likely be required to support all JTRS waveforms, both
networking and non-networking. The Modem Super Networking API Service Definition
would therefore need to be inclusive of all waveform unique interfaces.

3. Each of the interfaces defined in IDL will impact the Core Framework (CF)

2.6.2.2.2.2 Architectural Considerations
This option requires the Architecture and Core Framework to provide a common mechanism to
identify Networking API Service Definitions to insure networking resources have a common
interface.

MSRC-5000SRD
Appendix D

D-2-13

2.6.2.2.2.3 Relative Strengths and Weaknesses
This option has the following strengths:

1. The use of a Super Networking API Service Definition would foster reuse of service
definitions amongst multiple waveforms.

2. A single API Service Definition for each layer for the protocol stack would foster greater
“mix and match” portability between various vendors and waveforms.

This option has the following weaknesses:

1. A single Super Networking API Service Definition for each OSI layer would be inclusive
of interfaces required for all ORD supported waveforms for each OSI layer, this would
make the API very complex.

2. It is unlikely that a single Super Networking API Service Definition for each OSI layer
would gain wide commercial acceptance.

3. The Super Networking API Service Definition approach would require a network
component to support all the interfaces be defined by the Super Networking API Service
Definition. This would add complexity to the development of network components.

4. Since a Super Networking API Service Definition would have to encompass the interfaces
required for all ORD supported waveforms, as new waveforms were developed the
existing Networking API Service Definition would have to be updated to include any
new interface requirements. This would make the Super Networking API Service
Definition difficult to maintain.

2.6.2.2.3 Service Definition Option #3 Commercial Model
The following three sections summarize this option. For more detailed information regarding the
analysis of this option refer to section 3.1.3.

2.6.2.2.3.1 Description
This alternate supports the commercial world approach to creating/controlling Networking API
Service Definitions (similar to that used for controlling MIBs in the SNMP protocol). This
alternate encourages total reuse of Networking API Service Definitions. The Networking API
Service Definition must be reused in its entirety. If an API Service Definition is not available to
reuse in its entirety a new Networking API Service Definition must be created (may be a partial
copy of the previous API Service Definition). For example if an API Service Definition is
available for SINCGARS and if this API Service Definition can be reused for all SINCGARS
implementations, then all SINCGARS implementations are identical from a portability
perspective. However if an SINCGARS implementation has a feature that is not supported by the
current documented SINCGARS API Service Definition, a new SINCGARS API Service
Definition must be written. The "Commercial Model" is accomplished by the following methods:

1. Specifying methods to control the growth of API Service Definitions via configuration
control body.

2. Providing a method for API negotiation/identification (i.e. Universally Unique Identifier
[UUID].

MSRC-5000SRD
Appendix D

D-2-14

2.6.2.2.3.2 Architectural Considerations
This option requires the Architecture and Core Framework to provide a common mechanism to
identify Networking API Service Definitions to insure networking resources have a common
interface.

2.6.2.2.3.3 Relative Strengths and Weaknesses
This method has the following strengths:

1. Provides for reuse and consistent interfaces for waveform implementations which can
support a common interface.

2. Provides for future waveforms through copying and modifying of the existing Networking
API Service Definition.

The method has the following weaknesses:

1. It requires a control body to maintain recommended common interfaces and to decrease
the propensity for growth.

2. It requires reuse of the Networking API Service Definition in its entirety; lacks
inheritance.

2.6.2.2.4 Service Definition Option #4 Commercial Model with Inheritance
The following three sections summarize this option. For more detailed information regarding the
analysis of this option refer to section 3.1.4.

2.6.2.2.4.1 Description
This alternate supports the flexibility of how the commercial world creates Networking API
Service Definitions combined with a configuration control process (similar to that used for
controlling MIBs in the SNMP protocol) to support interoperability and portability. This option,
which is an object-oriented approach, facilitates polymorphism and code reuse via common
Networking API Service Definitions. The granularity of a Networking API Service Definition
determines its reusability. For example a Networking API Service Definition for a F/A - 18
aircraft would be difficult to reuse for anything except for fixed wing fighter aircraft. However if
you break the Networking API Service Definition into smaller inheritable pieces, those pieces
(e.g. throttle, sensors, displays, navigation, communication,...) can be reused by many aircraft
(fixed and non-fixed wing). The same concept applies to Networking API Service Definitions,
where there are functions that are common to a protocol layer (e.g. flow control, packet data
exchange, acknowledgment processing...). The small pieces are called the building block APIs.
To promote commonality of the building blocks Networking API Service Definitions, a control
and identification method is required. "Commercial Model with Inheritance" is accomplished by
the following methods:

1. Mandating that Networking API Service Definitions be documented in a standard
language which supports inheritance (i.e. Interface Definition Language [IDL])

2. Specifying methods to control the growth of inheritance trees

3. Providing a method for API negotiation/identification (i.e. Universally Unique Identifier
[UUID]

4. Providing the framework for creating building block API Service Definitions that can be
inherited by API Service Definitions to promote common interfaces.

MSRC-5000SRD
Appendix D

D-2-15

2.6.2.2.4.2 Architectural Considerations
This option requires the Architecture and Core Framework to provide a common mechanism to
identify Networking API Service Definitions to insure networking resources have a common
interface.

2.6.2.2.4.3 Relative Strengths and Weaknesses
This method has the following strengths:

1. Provides consistent interface definition method.

2. Provides for extensibility.

3. Provides for future waveforms to inherit/reuse existing waveform Networking API Service
Definitions.

4. Fosters backward compatibility.

The method has the following weaknesses: it needs a control body to maintain recommended
inheritance trees to foster common interfaces and to decrease the propensity for growth of
inheritance trees.

2.6.2.2.5 Service Definition Option #5 GloMo Rooftop API based Networking API Service
The following three sections summarize this option. For more detailed information regarding the
analysis of this option refer to section 3.1.5.

2.6.2.2.5.1 Description
This Networking API Service Definition approach is based upon the GloMo Rooftop API
framework except that the primitives are specified in IDL. This is the Networking API that the
MSRC proposed during JTRS Phase 1. Since this service definition includes inheritance, it can
be considered a special instance of Alternative Option 4 Networking API Service Definition.

2.6.2.2.5.2 Architectural Considerations
See Service Definition Option # 4.

2.6.2.2.5.3 Relative Strengths and Weaknesses
See Service Definition Option #4. This option has the additional benefit of being specified in
IDL.

2.6.3 Transfer Mechanism Analysis

2.6.3.1 Transfer Mechanism Criteria (Figures of Merit) and Ratings
(Note: the criteria numbers in the following tables refer to the detailed questions presented in
section 3 of this document. For example, criteria 6.1 (Waveform Portability) is treated in sections
3.2.n.6.1, where n refers to Transfer Mechanism Option n (1-4).)

Numeric areas that are highlighted both at the top and lower level indicate areas where the
Networking Working Group did not come to a consensus during the initial review of the analysis
data. After leaving the meeting, the individual members considered the data and then met again
to come up with a common view and position that is described in the SCA.

MSRC-5000SRD
Appendix D

D-2-16

Table 5. Networking API Transfer Mechanism Figure Of Merit (FOM) Analysis
Criteria Weight Option 1:

CORBA4
Option 2:
CORBA2

Non-CORBA2

Option 3:
CORBA3

CORBA-Ref

Option 4:
CORBA2

STREAMS2

6.1 Waveform Portability 20% 9 3 9 9

6.2 Ability to support legacy
and future waveforms

15% 9 9 9 9

6.3 Performance
(Efficiency/Latency)

15% 1 3 3 9

6.4 Extensible 5% 9 9 9 9

6.5 Dynamically construct/
deconstruct protocol stacks

10% 9 3 9 9

6.6 Component
Interoperability (Component
plug & play)

15% 9 9 9 3

6.7 Cost 10% 9 9 9 9

6.8 Commercial Acceptance 5% 1 1 1 3

6.9 Security binary (1
or 0)

3 3 3 3

6.10 Ability to adapt to
commercial trends

5%

SCORE 100% 6.95 5.45 7.25 7.35

Need to research with available data and re-assess.

Waveform Portability Ability of waveform software/hardware to move from one JTRS platform to
another without modification (other than a potential recompile).

Legacy support Ability of the system to support existing waveforms in a consistent manner, i.e.
that same manner as new waveforms are supported).

Performance Ability of the system to support high speed, high data, low latency waveforms.
Includes high data rate throughput and low command latency from red processor to
modem cards.

Extensible Ability of the architecture to be extended to support new waveform interfaces

and mechanisms.

Dynamic stack construction Ability of the design to support the dynamic (i.e. run time) build-up and tear-down
of each layer of a protocol stack for each waveform.

Component interoperability Ability of individual waveform components to be reused by other waveforms; the
ability of

components to support plug and play.

Cost Protocol software entity development, maintenance, and porting cost (Higher
score corresponds to lower cost.)

Commercial Acceptance Degree to which the architecture is acceptable to the commercial world.

MSRC-5000SRD
Appendix D

D-2-17

Security Ability of the design to support the JTRS security architecture. This point is
considered binary in that the alternate will either support or not support the JTRS
security concept. As part of the evaluation of this criteria the ability of the
alternate to support control/status bypass must be evaluated. Difficulty in
implementing with the alternate is quantified under Cost.

Commercial Adaptability The ability of the architecture to adapt to emerging commercial networking
standards.

Ratings to Detailed Questions

The Combined Answers to the Detailed Questions are then Combined to yield a single 1, 3, or 9
value in the Combined Evaluation Factor

Option 1:
CORBA4

Option 2:
CORBA2

Non-CORBA2

Option 3:
CORBA3

CORBA-Ref

Option 4:
CORBA2

STREAMS2

6.1.1 (6.1) 9 3 9 9 Note 1
6.1.2 9 9 9 9
6.1.3 9 9 9 9

6.2.1 (6.2) 9 9 9 9
6.2.2 9 9 9 9
6.2.3 9 9 9 9
6.2.4 9 9 9 9

6.3.1 (6.3) 1 9 3 9 Note 2
6.3.2 1 3 3 9 Note 3

6.4.1 (6.4) 9 9 9 9
6.5.1 (6.5) 9 3 9 9

6.5.2 9 9 9 3
6.5.3 9 3 9 9

6.6.1 (6.6) 9 9 9 9
6.6.2 9 9 9 3

6.7.1 (6.7) 9 9 9 9
6.7.2 9 9 9 9
6.7.3 9 9 9 9

6.8.1 (6.8) 1 1 1 3
6.8.2 1 1 1 1

6.9.1 (6.9) 9 1 9 9
6.9.2
6.9.3 3 3 3 3

6.10.1 (6.10)

Note 1: Portability using Option #4 is worse (a 3) on the Networking API Service Definition if it
is one of several mechanisms and better (a 9) if it is the only approved mechanism.
Note 2: Option #3 has the disadvantage of additional context switching over Options #2
Note 3: Option #1 has non deterministic behavior

MSRC-5000SRD
Appendix D

D-2-18

2.6.3.2 Transfer Mechanism Options
The following sections provide summary information for the analysis that the NWG did for the
Networking API Transfer Mechanism. The group initially derived five options for the transfer
mechanism that cover the range of possible implementations. It was decided that the fifth
option, API built around CF that allows any middleware, be removed because it is effectively
building your own CORBA ESIO and security needs a consistent interface (i.e. GIOP). Also, the
OE is abstracted out via the POSIX interface. The NWG then analyzed the remaining four
options using questions developed from the evaluation described in Section 2.6.3.1. The ratings
of answers provided the basis of the selection of the chosen option for the SCA.

2.6.3.2.1 Transfer Mechanism Option #1 CORBA, CORBA, CORBA, CORBA
The following three sections summarize this option. For more detailed information regarding the
analysis of this option refer to section 3.2.1.

2.6.3.2.1.1 Description
This alternative uses CORBA for non-real-time setup of waveform and non-real-time setting of
operation parameters, Waveform Control across Red-to-Black Boundary, real-time control, and
Waveform Data Flow across the Red-to-Black Boundary.

2.6.3.2.1.2 Architectural Considerations
Protocol applications would be the same as any other application, there no special architectural
requirements.

2.6.3.2.1.3 Relative Strengths and Weaknesses
This option has the following strengths:

1. Portability

2. Interoperability

This option has the following weaknesses:

1. Performance

2. Commercial acceptance

2.6.3.2.2 Transfer Mechanism Option #2 CORBA, CORBA, Non-CORBA, Non-CORBA
The following three sections summarize this option. For more detailed information regarding the
analysis of this option refer to section 3.2.2.

2.6.3.2.2.1 Description
This alternate uses CORBA for real-time and non real-time control and data flow with the
following exceptions: non-CORBA transfer mechanisms will be allowed for real-time waveform
control across Red-to-Black Boundary, non-CORBA transfer mechanisms will be allowed for
waveform data flow across red-to black boundaries and hiding non CORBA-compliant objects in
a IDL wrapper/adapter (e.g. kernel protocols) . The fundamental concept of this option is to put
adapters/wrappers around objects that do not fit well into the CORBA environment. An adapter
converts CORBA calls to the local transfer methods of the wrapped/hidden device. For example
when data flows across the red/black boundary (through the COMSEC device) there will be a
CORBA endpoint on each side of the COMSEC device. The actual processing of the data

MSRC-5000SRD
Appendix D

D-2-19

flowing through the COMSEC device will be done via another mechanism. However the adapter
makes it seem as if the COMSEC device is a CORBA object. Also this method allows grouping
large groups of protocols (e.g. TCP/IP in kernel space) into one CORBA object via an adapter.

2.6.3.2.2.2 Architectural Considerations
Protocol applications would be the same as any other application, no special architectural
requirements, because the augmentations are hidden via the adapters.

2.6.3.2.2.3 Relative Strengths and Weaknesses
The strength of this option is the ability to port non CORBA software (e.g. legacy software) and
hardware into the CORBA environment.

The weaknesses of this option are:

1. Portability may be an issue because interfaces are hidden via adapters; To port objects the
entire wrapped object must be ported as a whole.

2. Performance could be affected by the addition of adapters and overhead associated with
standard CORBA IOP.

3. Commercial acceptance.

2.6.3.2.3 Transfer Mechanism Option #3 CORBA, CORBA, CORBA, CORBA-Reference
The following three sections summarize this option. For more detailed information regarding the
analysis of this option refer to section 3.2.3.

2.6.3.2.3.1 Description
This alternate is a superset of options 1 and 2.This option uses CORBA for real/non-real time
control and data flow. Standard CORBA with IOP should be used unless there is a real time
requirement that cannot be met. This option advocates that when there is a real time requirement
that can not be met with the standard CORBA IOP, the standard CORBA IOP should be
augmented. An example augmentation is to use CORBA pass by reference (e.g. shared memory
transport and a shared RAM card). Also this alternate advocates using adapters/wrappers as
described in option 2 as long as the objects are wrapped so that portability is not effected.

2.6.3.2.3.2 Architectural Considerations
Protocol applications would be the same as any other application, no special architectural
requirements, because the augmentations are hidden via the CORBA interface.

2.6.3.2.3.3 Relative Strengths and Weaknesses
The strength of this option is the component interoperability, component portability, and
processor independence. Every JTRS compliant box must support the CORBA interface and
every application must adhere to the SCA Application Environment profile; therefore the
protocols can be ported from platform to platform, and processor to processor the same as any
other JTRS application. CORBA makes the location of an application transparent. This allows
applications to be easily moved without effecting other applications which are dependent on
them. Also this option specifies a method to address real-time issues associated with protocols
without effecting the above specified advantages of CORBA. This option is a superset of the
other options with the exception of the Option # 4 (e.g. STREAMS).

The weakness of this CORBA-based option relative to Option # 4 are performance and
commercial acceptance. For example STREAMS modules/drivers would run in kernel space and

MSRC-5000SRD
Appendix D

D-2-20

are at a higher priority than the other applications; therefore kernel space applications will run
faster. Currently most protocols run in kernel space.

2.6.3.2.4 Transfer Mechanism Option #4 CORBA, CORBA, STREAMS, STREAMS
The following three sections summarize this option. For more detailed information regarding the
analysis of this option refer to section 3.2.4.

2.6.3.2.4.1 Description
This option presents one example of a transfer mechanism other than CORBA for real-time data
flow and control. An alternate transfer mechanism was investigated because wide band
waveforms may require a more efficient transfer mechanism between network protocol layers
than CORBA can provide. In addition this option examined a networking API transfer
mechanism that is currently in use in the commercial world and can make maximum use of
COTS networking protocol implementations.

The particular transfer mechanism investigated was UNIX System V STREAMS. The
STREAMS environment can exist in operating systems with or without memory management. It
abstracts the operating system from the protocol developer and provides a means to gain
modularity and portability for protocols at the kernel level. In addition it provides the capability
to dynamically build up and tear down a protocol stack which is a requirement for JTRS. The
CF is used for instantiation and configuration of the protocol stack. CORBA based adapters
present the set of non-real time control interfaces that are not hidden (i.e. used) by another
STREAMS based protocol layer.

2.6.3.2.4.2 Architectural Considerations
The CF would have to provide the capability to load and unload kernel modules in a memory
mapped OS because the STREAMS environment exists in kernel space.

The CF would have to provide the capability to push, pop, link and unlink STREAMS modules
as part of its scheme for connecting protocol entities.

A rule set would have to be defined to accommodate the distribution of STREAMS modules
across processors.

A rule set governing the use of CORBA based adapters with STREAMS modules would have to
be defined.

2.6.3.2.4.3 Relative Strengths and Weaknesses
The strengths of the STREAMS option relative to the other transfer mechanism options are
performance and commercial acceptance. The relative weakness is component interoperability
(specifically interoperability between unlike processors). Because STREAMS has not been
mandated then it becomes a weakness relative to a full CORBA implementation.

2.6.4 Additional Analysis Information
The following sections provide additional background information for the analyses that the
Networking Working Group performed. This information was discussed within the WG as part
of the overall analysis process and considered when determining the selected architecture.

MSRC-5000SRD
Appendix D

D-2-21

2.6.4.1 Rationale for Alternate Transfer Mechanisms

2.6.4.1.1 Overview
This section provides the rationale for calling out alternate transfer mechanisms for real time data
flow and control in the SCA. Real time data flow includes voice, video and data to be
transmitted/received over the air. Real time control is the information that is attached to each
packet of real time data for cases where per packet control information is required.

2.6.4.1.2 Wideband Waveform Requirements
2.6.4.1.2.1 Video/Voice/Data
The ORD and the JTRS Networking IPT Quick Look Report both state the need for video, voice
and data capability. The video and voice will be packetized and will be multiplexed over the
same waveform channel. Intended uses include collaborative planning (data conferencing,
white-boarding, application sharing and file transfer), video teleconferencing (multiplexed audio,
video and data), distance learning (streaming video and audio, file transfer and web page
downloads), message and data exchange (SA distribution, fire control, imagery, etc).

2.6.4.1.2.2 Multicasting
Future tactical networks will make heavy use of multicasting to conserve bandwidth. For
instance, Tactical C2, Situation Awareness, and video/audio streams will be multicast to multiple
recipients.

2.6.4.1.2.3 Ad Hoc Networks
Out in the field, automatic formation and maintenance of networks will be required so that user
services flow between platforms as they enter and leave LOS clusters without operator
intervention.

2.6.4.1.3 Wideband QOS Considerations
2.6.4.1.3.1 Throughput
Based on the analysis in the JTRS Networking IPT (Government) Quick Look Report of future
wide band waveform requirements, JTRS radios will need to support burst data rates in excess of
10 mbps on a single channel. Put multiple channels in a radio and the aggregate burst data rate
will exceed 100 mbps. In addition, bandwidth requirements tend not to remain static. As TI
users increase their dependence on digital battle command, monitoring, and communication
applications their need for increased bandwidth will be analogous to user’s unbounded needs in
the commercial internet.

2.6.4.1.3.2 Latency
Real-time audio requires that latency not exceed ~ 200-250 ms for full duplex conversation to
take place. Any greater latency and the participants in a conversation perceive it to be simplex.
The latency figure includes the time from speaker enunciation to listener reception. This would
include all hops through the net.

2.6.4.1.3.3 Isochronous Behavior
Video and audio transmission require isochronous behavior between source and destination. For
streaming video and audio that is not interactive, buffering/queuing at the application level (i.e.
end points) can ameliorate data rate fluctuations in the transmission path. When the audio/video

MSRC-5000SRD
Appendix D

D-2-22

is interactive such as in a videoconference, then some of the burden to maintain an isochronous
data stream shifts to the elements in the transmission path.

2.6.4.1.3.4 Resource Reservation
Real time audio/video will require transmission protocols that support QoS guarantees. One
such protocol is Asynchronous Transfer Mode (ATM), which exists at OSI layer 2 (link layer).
The protocol data unit (PDU) size for ATM is fixed at 53 bytes. If the transfer mechanism
between the ATM layer and the Modem is not efficient the overhead of the transfer mechanism
can become a significant portion of the data transfer between the ATM layer and the modem.

2.6.4.1.3.5 Multicast Filtering
Currently, the evaluation of multicast addresses occurs at the IP layer. In this case, traffic that is
not of interest to a node in a network can still make its way into the IP layer where it will be
dropped. This activity will consume processing resources in a radio. If the implementation’s
network stack & the transfer mechanism are not efficient, the consumption of valuable
processing resources will be considerable.

2.6.4.1.4 Factors Affecting Performance
2.6.4.1.4.1 Data Copying
Each time a copy of a packet is made protocol stack performance is degraded. In commercial
protocol stacks a buffer management scheme is used to minimize data copying. Existing ORBs
copy information from client to server.

2.6.4.1.4.2 Context Switching
Context switching, both light and heavy weight, have an impact on performance because context
switches take more time than a direct method invocation or function call. In a CORBA based
application level protocol stack there will be context switching between the protocol layers.
This is extra overhead that is not incurred in a kernel level protocol stack.

2.6.4.1.4.3 Boundary Crossings
Crossing the boundary from user space to kernel space and vice versa incurs a performance
penalty. When transferring data between processes, ORBs currently make these transitions at
both the client and server end.

2.6.4.1.4.4 Marshalling
CORBA ORBs will marshal data between a client and server in separate processes in separate
address spaces. Some ORBs will even marshal between a client and server in the same address
space. This is extra overhead.

2.6.4.1.4.5 GIOP
The General Inter-Orb Protocol (GIOP) defines the following constructs for a client to invoke
operations on a server. The CORBA specification specifically states that GIOP must be
implemented in all conforming ORBs but that internal ORB communication is not restricted to
using GIOP. However, when communicating between separate processes, it is assumed that
GIOP is used. The following tables were generated from the CORBA 2.3 specification and
represent the contents of a RequestHeader that is used when invoking and operation on an object.

MSRC-5000SRD
Appendix D

D-2-23

GIOP::RequestHeader_1_2 (structure)

Field Size in Bytes or Composite Name
request_id 4
response_flags 1
reserved 3
target TargetAddress
operation 1..n
service_context IOP::ServiceContextList

GIOP::TargetAddress (union)

Field Size in Bytes or Composite Name
object_key 1..n
profile IOP::TaggedProfile
ior IORAddressingInfo

GIOP:: IORAddressingInfo (structure)

Field Size in Bytes or Composite Name
selected_profile_index 4
ior IOP::IOR

IOP::ServiceContextList (sequence)

Field Size in Bytes or Composite Name
ServiceContext

IOP::ServiceContext (structure)

Field Size in Bytes or Composite Name
context_id 4
context_data 1..n

IOP::TaggedProfile (structure)

Field Size in Bytes or Composite Name
tag 4
profile_data 1..n

IOP::IOR (structure)

Field Size in Bytes or Composite Name
type_id 1..n
profiles sequence of TaggedProfile
Assuming the following:

• That target field in the RequestHeader is using an object_key as the TargetAddress

MSRC-5000SRD
Appendix D

D-2-24

• The object_key contains a time stamp, POA ID and Object ID and the total size of the
object_key is 36 bytes (17 character time stamp + “/thePOA/theServant” + null)

• That the operation name is three characters + null

• That the service_context is empty
This yields a request header size of 4+1+3+36+4 = 48 bytes. Added to a 53-byte ATM cell
yields a packet of 101 bytes of which 47.5% is overhead. This calculation does not include any
overhead for the CORBA transport itself. It can be seen that for small packets the CORBA
overhead can surpass the size of the payload.

2.6.4.1.4.6 Processing Resources
Processing resources can very widely within JTRS radios. In a resource-constrained
environment where size, weight and power limitations govern parts selection, efficient
performance can become a necessity.

2.6.4.1.5 Leveraging COTS
The commercial world currently is standardized around kernel based protocol stacks. For
extreme cases the protocols are embedded in hardware such as IP routers that support gigabit
Ethernet. To take advantage of COTS software/hardware solutions for networking then alternate
transfer mechanisms for protocols will need to be investigated.

2.6.4.1.6 Summary
In summary there are several factors that individually or in combination will drive an
implementation of a wide band waveform towards an alternate transfer mechanism. Therefore
the SCA specifically calls out alternate transfer mechanisms and prescribes a path for radio
vendors to follow if the performance penalties incurred from the use of CORBA become too
great.

2.6.4.2 Name – Value Pairs and the Service Definitions
Final definition of how to handle name –value pairs is a task that stills needs to be completed by
the Networking Working Group.

2.6.4.3 Type Any
The CORBA Any type is required by Service Definition Option 1 to support multiple
waveforms. Independent research of multiple ORBS has shown that the Any type is inefficient.
This was a factor in picking Service Definition Option 3 over Service Definition Option 1. The
following URLs point to research on ORB performance:

http://www.omex.ch/CorbaTB/corbatb.htm

http://www.beust.com/virginie/Benchmarks/

http://www.kav.cas.cz/~buble/corba/comp/

http://www.omex.ch/CorbaTB/corbatb.htm
http://www.beust.com/virginie/Benchmarks/
http://www.kav.cas.cz/~buble/corba/comp/

MSRC-5000SRD
Appendix D

D-2-25

2.6.4.4 Example of CORBA/STREAMS Interoperation

2.6.4.4.1 Description
This section describes how STREAMS and CORBA based implementations of external protocol
entities can be developed to interoperate. The example shown in this paper illustrates how a
STREAMS-based stack on the Red Processor can interface with a CORBA-based red side link
layer. The red-side link layer is assumed to communicate with a CORBA-based modem layer on
the black side.

2.6.4.4.2 Waveform instantiation
Figure 6 shows a red side STREAMS based protocol stack after startup including relevant object
representations. The Domain Manager (DoM), Red Processor Device (RP Dev) and Security
Device (Sec Dev) and Object Request Broker (ORB) are shown. CORBA sits at the application
layer and interfaces to the stack through the sockets API. The routing daemon which contains the
routing protocols such as RIP, OSPF, DVMRP, etc also interfaces to the stack through the
sockets API. At the bottom of the stack are three drivers, one for Ethernet, one for the INFOSEC
and one pseudo-device. The Ethernet driver presents the Data Link Provider Interface (DLPI)
interface to the IP module. The INFOSEC driver implements the interface to the INFOSEC.
The INFOSEC driver does not present the DLPI interface itself because a link module may be
pushed on top of it that is sending to and receiving from a modem module. Therefore the driver
must be more generic. A separate DLPI module presents the DLPI interface to the IP module.
This interface is the gateway to the Black Side subnet. The pseudo-device is for moving network
functionality up into application space. As shown on the diagram, external IIOP traffic flows
through the Ethernet and up the protocol stack to the ORB or gets routed by the IP layer to the
INFOSEC interface for transport to a Black Processor. Since there are no waveforms running,
there is no real time data flow.

MSRC-5000SRD
Appendix D

D-2-26

Infosec Driver

DLPI Module DLPI Ethernet
Driver

IP Module

TCP Module

Sockets Module

Stream Head

Sockets API

CORBA
Routing Protos
and Net Apps

Stream Head

Sockets Module

UDP Module

Sockets API

CORBA Based
Apps (e.g. DM)

User

Kernel

ORBSec Dev

DoM

RP Dev

Pseudo-Device
i

DLPI Module

Flow of IIOP traffic
to/from Ethernet

Flow of IIOP traffic
to/from INFOSEC

Figure 6 - Red Side (Single Processor) Stack After Startup

Figure 7 shows the stack at the beginning of waveform instantiation. The RP Dev has been
commanded by the Domain Manager to load and execute the application software. Upon
execution the factories are created. The Domain Manager has then commanded a factory to
create a link adapter that opens a STREAM to the pseudo device.

MSRC-5000SRD
Appendix D

D-2-27

IP Module

Factory
Factory

Infosec Driver

DLPI Module DLPI Ethernet
Driver

TCP Module

Sockets Module

Stream Head

Sockets API

CORBA
Routing Protos
and Net Apps

Stream Head

Sockets Module

UDP Module

Sockets API

CORBA Based
Apps (e.g. DM)

User

Kernel

ORBSec Dev

DoM

RP Dev

Pseudo-Device Driver

DLPI Module

Stream Head

STREAMS API

Link Adap

Link Adapter

Factory

Figure 7 Red Side Stack Waveform Instantiation Step 1
Figure 8 shows the next step in the instantiation process. The Domain Manager commands
another factory to create the Red Link Resource and a factory on the black side to create a
Modem Resource (not shown). The Domain Manager then connects the Link Adapter to the Red
Link Resource that is in turn connected with the modem resource on the black side. In addition
an IP address is assigned to the pseudo-device driver interface. The interface can now be
configured as an IP routing gateway. Assuming that the waveform has been fully instantiated
and configured on the black side as well, the Radio System is ready to receive and transmit
networked traffic over the air. The arrowhead terminated line illustrates the path that the on-air
traffic would take through the STREAMS stack, CORBA, the link adapter and the Red Link
Resource.

MSRC-5000SRD
Appendix D

D-2-28

 IP Module

Red Link Resource

Infosec Driver

DLPI Module DLPI Ethernet
Driver

TCP Module

Sockets Module

Stream Head

Sockets API

CORBA
Routing Protos
and Net Apps

Stream Head

Sockets Module

UDP Module

Sockets API

CORBA
Based Apps
(e.g. DM)

User

Kernel

Pseudo-Device Driver

DLPI Module

Stream Head

STREAMS API

Link Adapter

Factory
Factory

ORBSec Dev

DoM

RP Dev

Link Adap
Red Link

Factory

To/From Modem
Resource through

INFOSEC
To/From
Ethernet

Figure 8 Red Side Stack Waveform Instantiation Step 2

MSRC-5000SRD
Appendix D

D-3-1

3 SUPPLEMENTAL DATA ON OPTIONS CONSIDERED
This section contains additional information on the five Networking API Service Definition
options (section 3.1) and the four Networking API Transfer Mechanism options (section 3.2).

3.1 NETWORKING API SERVICE DEFINITION OPTIONS

3.1.1 Option 1 – Small Networking API Service Definition Using Name/Value Pairs
Interface Type: Networking API Service Definition

Name: Option 1 – Small Networking API Service Definition Using Name/Value
Pairs

Date: 17 June 2000

Revision: 4.0

Author: Jim Stevens (jasteven@collins.rockwell.com)

Company: Rockwell Collins

3.1.1.1 Description
This Networking API option uses a small set of operations (config, query, response, transmit,
receive, etc) along with name/value pairs to pass control information. This Networking API
option is based upon the output of the MSRC Networking IPT meeting held at Fort Wayne,
Indiana on 18-21 January 2000.

3.1.1.2 Diagram
The following diagram shows the operations defined by this Networking API Service Definition:

Operations
with

coupled
responses

Upper Protocol Layer (e.g., Link)

Lower Protocol Layer (e.g., Modem)

Operations
inherited

from
lifecycle

si
gn

al

co
nf

ig
st

at
us

qu
er

y
st

at
us

re
se

t
st

at
us

Tr
an

sm
it

Tr
an

sm
it_

St
at

us

R
ec

ei
ve

_C
om

m
an

d
R

ec
ei

ve
_S

ta
tu

s

Tr
an

sm
it_

Si
gn

al

R
ec

ei
v_

eS
ig

na
l

New
NAPI

Service
Operations

C
on

ne
ct

C
on

ne
ct

_S
ta

tu
s

D
is

co
nn

ec
t

D
is

co
nn

ec
t_

St
at

us

C
on

ne
ct

_S
ig

na
l

D
is

co
nn

ec
t_

Si
gn

al

Operations
needed

for Modem
NAPI

Operations
needed
for Link,
Network,

& Transport
NAPIs

MSRC-5000SRD
Appendix D

D-3-2

3.1.1.3 Theory of Operation
This Networking API Service Definition option defines a small set of possible operations along
with the specification of the control and data within the operations as well as a method of
interface configuration control, interface version identification, and interface negotiation.

This option provides a small service definition since it defines a fixed set of operations that all
Networking API Service Definitions could draw from. In particular, the Modem Networking
APIs could draw from a set of eight possible operations while the Link, Network, and Transport
Networking APIs could draw from a set of twelve possible operations. A small number of
operations helps to develop consistency between Networking API Service Definitions and
facilitates going from one waveform’s service definition to another.

This small number of operations was developed by the group based upon our experience with a
large number of waveforms, including most of the waveforms called out by the JTRS ORD as
well as a variety of other commercial, military, and emerging waveforms (such as IEEE 802.11,
VRC-99, and Soldier Phone). We were able to merge all of the operations needed for service
interfaces for this plethora of waveforms down to the small number of operations defined. Also,
some of the operations can be reused from the Core Framework Lifecycle Interface thus reducing
the development effort and possibly the implementation footprint required.

This option specifies that control information is passed by name/value pairs specified in IDL
while the traffic data payload could be passed by value (more portable approach) or by reference
(better performance approach). Whether the traffic payload is passed by value or by reference
will be transparent to the protocol resources. If the resources are in different memory spaces,
then the traffic data buffer is passed by value (the same way used in IDL). However, if the
resources are in the same memory space, then the traffic data buffers may be passed by
reference, thus decreasing latency from the buffer copying. The key is to define the semantics of
the operations so that the operation looks identical to the software whether buffers are passed by
value or by reference.

A potential refinement to this Networking API is to define buffer definitions and operations for
efficient protocol layering. Simple buffers (basically just a block of data) would be used for
simple protocols like push-to-talk voice while more complex buffer definitions (similar to socket
and STREAMs m_bufs) could be used for more complex network protocols (for efficient
layering and packet header manipulations up and down the protocol stacks).

This option defines a method of interface configuration control, interface version identification,
and interface negotiation. It was designed to give vendors and users great freedom and
flexibility in trading off performance, portability and cost drivers. It promotes open interface
standards for waveforms and allows customers to assess the impact of changes. Its configuration
control provides mechanism for managing evolution and tracking changes. The flexible service
definition as well as the configuration control approach was modeled after that used to specify
and manage MIBs for SNMP and CMIP.

A Networking API Service Definition will be defined at the functional level for a waveform or
set of waveforms. The developer of a waveform implementation will publish the Networking
API Service Definition(s) of its visible network components. The service definition will specify
what subset of the twelve operations are used along with the name/value pairs (including the
value data structures and enumeration values). Each Networking API Service Definition will be
assigned a globally unique identifier (GUID) that:

MSRC-5000SRD
Appendix D

D-3-3

• Specifies the defined Networking API service interface

• Specifies the version number of the interface

• Must be visible to the Domain Manager profile.
There will be a controlling body for GUIDs that controls the control assignment of GUIDs. This
configuration control body should be an open standards body similar to the IETF or the IEEE.
This controlling body would assign a status for each Networking API Service Definition similar
to the way that the IETF assigns statuses to Internet standards today. Potential statuses could
include:

• mandatory for a particular waveform or set of waveforms (i.e. if a vendor implements one of
the particular waveforms, then they must implement this Networking API Service Definition
to be JTRS compliant)

• recommended for a particular waveform or set of waveforms (i.e. if a vendor implements one
of the particular waveforms, then it is recommended, but not required, that they implement
this Networking API Service Definition to be JTRS compliant)

• allowable for a particular waveform or set of waveforms (i.e. the vendor is allowed, but not
required to implement this Networking API Service Definition to be JTRS for one of the
particular waveforms)

• Other possible statuses including experimental, not recommended, etc.
Mandatory and/or recommended Networking API Service Definition(s) would be identified and
published for each waveform that is standardized for JTRS. Companies and other organizations
are free to request their own GUID for their own Networking API definitions. The companies
and organizations can then decide whether to make their own interfaces definitions and standard
Networking API extensions public or private. Thus, this interface is extensible to support growth
and customization.

Any Networking API Service Definitions that are chosen as JTRS standards (i.e., mandatory or
recommended) must be published and non-proprietary. However, vendors can choose to keep
the details of particular Networking APIs private or proprietary (so that the status is likely to be
allowable or some other.) The owner of interface controls version numbering. This is similar to
the approach used to managing MIBs in SNMP and CMIP.

For example, suppose that there is a JTRS mandatory Networking API Service Definition for the
SINCGARS waveform. If a vendor develops a new proprietary way to mitigate co-site
interference that requires a new SINCGARS Networking API Service Definition, then that
vendor could get a GUID for its new Networking API Service Definition. The vendor would
have the freedom to keep the details of the new Networking API Service Definition proprietary
or to make it open. However, the new Networking API Service Definition could only become
mandatory or recommended if the vendor made the Networking API Service Definition open. In
either case, the vendor could now develop and sell a SINCGARS modem object that supports
both the mandatory Networking API Service Definition and this new allowable Networking API
Service Definition. Since there is a GUID, the Domain Manager can determine at instantiation
whether the SINCGARS modem object is being linked together with other objects that know
how to use the allowable SINCGARS service definition. If other such objects were available,
then a better co-site mitigation JTRS radio would result. If the other objects only knew how to

MSRC-5000SRD
Appendix D

D-3-4

support the mandatory Networking API Service Definition, then an operational JTRS radio
would result that runs the SINCGARS waveform.

All visible interfaces will be uniquely identified. A mechanism will be provided within the
Domain/Resource Manager to identify the interfaces used by the resources. When the
Domain/Resource Manager instantiates a Resource to satisfy a User request it selects the
resource with matching interface.

The twelve standard operations are:

1. Config (param_name_1, param_value_1, …)
The Config operation is used by upper layer protocols to set persistent parameters in lower layer
protocols. For example, it could be used in a Modem Networking API Service Definition to set
frequency, hop_set, mode (AM, FM), etc. The Config operation could have an optional
associated Status response. The associated Status response format is Status (GUID,
status_name_1, status_value_1, …).

2. Query (param_name_1, …)
The Query operation is used by upper layer protocols to request values of persistent parameters
or status from lower layer protocols. For example, it could be used in a Modem Networking API
Service Definition to request Config_parameters, Modem state (receiving, idle), queue_size, etc.
The Query operation has an associated Status response. The associated Status response format is
Status (GUID, status_name_1, status_value_1, …).

3. Reset ()
The Reset operation is used by upper layer protocols to set persistent parameters in lower layer
protocols to known default status. The Reset operation is similar to a power on/power off
sequence. The associated Status response is the same format is Status (GUID, status_name_1,
status_value_1, …). (Note that this command is not currently in the Core Framework Lifecycle
Interface, although it looks as if some combination of the Lifecycle Stop, Config, Initialize
operations provide the same behavior. The exact combination is TBD.)

4. Signal (signal_name_1, signal_value_1, …)
The Signal operation is used by lower layer protocols to provide an asynchronous signal or status
to upper layer protocols. For example, it could be used in a Modem Networking API Service
Definition to indicate synch_detect, TDMA_frame_start, alarm, etc. (Note that the Signal
operation was been added to the Core Framework Lifecycle Interface in SCA version 0.3.)

5. Transmit (persistent_set_id, <transient values>, buffer_handle)
The Transmit operation is used by upper layer protocols to tell lower layer protocols to transmit a
buffer of data. The persistent_set_id identifies a set of already loaded parameters (such as
frequency channel or hop set). The <transient values> are zero or more parameters (such as
transmit power or TDMA transmit slot) only used for this transmission and are passed as
name/value pairs (although an alternative approach which would be slightly more efficient would
be to pass using IDL). The Transmit operation could have an optional associated
Transmit_Status response. The Transmit_Status format is identical to the Transmit_Signal
operation.

MSRC-5000SRD
Appendix D

D-3-5

6. Transmit_Signal (<statuses>, buffer_handle)
The Transmit_Signal operation is used by lower layer protocols to return the status associated
with an attempted transmission to an upper layer protocol. The <status> are one or more status
associated with this transmission. Example <status> for a Modem Networking API Service
Definition could be good, failed due to overflow, CSMA timeout, etc. The <status> are passed
by name/value pairs (although an alternative approach which would be slightly more efficient
would be to pass using IDL). The buffer_handle may be empty.

7. Receive_Command (persistent_set_id, <transient values>, buffer_handle)
The Receive_Command operation is used by higher layer protocols to tell lower layer protocols
to receive a buffer of data. The persistent_set_id points to a set of already loaded parameters.
An example persistent set of parameters for a Modem Networking API Service Definition could
include frequency channel, hop set, etc. The <transient values> are zero or more parameters
(such as TDMA receive slot for a Modem Networking API Service Definition) that are only used
for this reception. The buffer_handle may be empty. The Receive_Command could have an
optional associated Receive response. The Receive response is identical to the Receive_Signal
operation.

8. Receive_Signal ()
The Receive_Signal operation is used by lower layer protocols to tell upper layer protocols about
the status a Receive command. The <status> are one or more status associated with this
reception. An example set of <status> for a Modem Networking API Service Definition could
include good_reception, CRC_error, corrected_errors, Signal_to_Noise, etc. The <status> are
passed by name/value pairs (although an alternative approach which would be slightly more
efficient would be to pass using IDL). The buffer_handle may be empty (in the case of an
incomplete or errored reception).

9. Connect (persistent_set_id, <transient values>)
The Connect operation is used by upper layer protocols to tell lower layer protocols to set up a
connection with its peer protocol entity in a different radio. The persistent_set_id identifies a set
of already loaded parameters (such as frequency channel or hop set). The <transient values> are
zero or more parameters (such as address or quality of service) only used for this connection and
are passed as name/value pairs (although an alternative approach that would be slightly more
efficient would be to pass using IDL). The Connect operation could have an optional associated
Connect_Status response. The Connect_Status format is identical to the Connect_Signal
operation.

10. Connect_Signal (<statuses>)
The Connect_Signal operation is used by lower layer protocols to return the status associated
with an attempted Connect operation to an upper layer protocol. The <status> are one or more
status associated with this connection attempt. Example <status> for a Link Networking API
Service Definition could be connection address, good, failed due to address not found, etc. The
<status> are passed by name/value pairs (although an alternative approach which would be
slightly more efficient would be to pass using IDL).

11. Disconnect (persistent_set_id, <transient values>)
The Disconnect operation is used by higher layer protocols to tell lower layer protocols to tear
down a connection with its peer protocol in a different radio. The persistent_set_id points to a

MSRC-5000SRD
Appendix D

D-3-6

set of already loaded parameters. An example persistent set of parameters for a Link Networking
API Service Definition could include frequency channel, hop set, etc. The <transient values> are
zero or more parameters (such as address for a Link Networking API Service Definition) that are
only used for this disconnection. The Disconnect could have an optional associated
Disconnect_Status. The Disconnect_Status response is identical to the Disconnect_Signal
operation.

12. Disconnect_Signal (<status>)
The Disconnect_Signal operation is used by lower layer protocols to tell upper layer protocols
about the status associated with a Disconnect operation. The <status> are one or more status
associated with this reception. An example set of <status> for a Link Networking API Service
Definition could include address, confirmed disconnect, unconfirmed disconnect, etc. The
<status> are passed by name/value pairs (although an alternative approach which would be
slightly more efficient would be to pass using IDL).

The first eight operations above are sufficient for a Modem Networking API Service Definition
for every waveform our working group knows about, including all of the waveforms identified
by the JTRS ORD. (For example simple push-to-talk waveforms may only use the Transmit and
Receive_Signal operations while more sophisticated networking waveforms may use all or
almost all of the operations.) The last four operations above may also be required for Link,
Network, and Transport Networking API Service Definitions.

3.1.1.4 Operational Environment (OE)
Note that with the addition of a Reset operation to the current Lifecycle interface, the Config,
Query, Signal, and Reset operations could be support by the Lifecycle interface. The Transmit,
Transmit_Signal, Receive_Command, Receive_Signal, Connect, Connect_Signal, Disconnect,
and Disconnect_Signal operations are a new interface outside the current core framework.

3.1.1.5 Protocol Layer Applicability
The first eight operations above are sufficient for a Modem Networking API Service Definitions
for every waveform our working group knows about, including all of the waveforms identified
by the JTRS ORD. (For example simple push-to-talk waveforms may only use the Transmit and
Receive_Signal operations while more sophisticated networking waveforms may use all or
almost all of the operations.) All twelve operations are sufficient for Link, Network, and/or
Transport Networking API Service Definitions for every waveform examined.

3.1.1.6 Networking API FOM Analysis

3.1.1.6.1 Waveform Portability
Does the Networking API Service Definition approach foster waveform portability?

Yes, through the use of a small common set of operations and a consistent way of passing control
and data. Also, the use of name/value pairs improves Human Machine Interface (HMI)
portability because generic HMI software can support new Networking APIs through the
incorporation of a table of the new name/value pairs. [This means that the Small Networking
API Service Definition can support new Networking APIs similar to how commercial Simple
Network Management Protocol (SNMP) managers can support new SNMP Management

MSRC-5000SRD
Appendix D

D-3-7

Information Base (MIB) definitions through the incorporation of the new MIB data definition
without having to write new SNMP manager software. SNMP MIBs currently defined as name
values using a variant of the ISO Abstract Syntax Notation One (ASN.1).]
Note: It is assumed that 'waveform portability' means porting a complete waveform (and no
hardware) from one JTRS platform to another, and not mixing and matching waveform
components.

3.1.1.6.1.1 Identify the porting steps required to take a waveform to another JTRS Platform and
evaluate the impact that the Networking API Service Definition approach has on that
process.

The following table lists the projected porting steps for a wide range of porting stimulus.

Porting Stimulus Description Projected Porting Steps Required
Because of the Networking API
Service Definition

Environment Change:
Different Processor

Waveform must be ported to a different
processor

No Networking API effect

Environment Change:
Different OS

Waveform must be moved to a different OS No Networking API effect

Environment Change:
Different Programming
Language

Waveform Objects must interact with
objects on the new platform that are written
in a different language

No Networking API effect

Environment Change:
Different Platform
Hardware

Waveform is hosted on new platform
hardware that may require additional or
different control, e.g. modem, INFSOEC,
red I/O

No Networking API effect

Environment Change:
Different Transport
Mechanism

Waveform is hosted on a new platform that
uses a different transport mechanism than
the source platform

Direct Rehost or Translation Shim
depending on the transport
mechanism.

The projected porting steps are defined from least to most effort in the following table.
Porting Step Description Effort Level
Direct Rehost Same processors, OSs etc. – No changes required None

Recompile Recompile of those portions of the waveform that are hosted on
a different processor

Minimal

Translation Shim Does the Networking API approach require that shims be added
to the waveform to port to the new platform?

Moderate

Edit/ReWrite Does the Networking API approach require such drastic code
changes that edit/rewrite is necessary?

Moderate-Extensive

3.1.1.6.1.2 Does the Networking API Service Definition approach foster waveform portability
for software that already supports an existing interface, e.g. ARINC 732?

Yes, through Translation Shims for a new Networking API. It would be possible to create a
Networking API using name/value pairs that maps into the functionality of an existing interface.
Then a translation shim is all that would be required to go from the Networking API to the
existing interface.

MSRC-5000SRD
Appendix D

D-3-8

Note, however, that as Networking APIs become standardized for waveforms, it may be more
difficult to support a plethora of existing interfaces for that waveform. For example, some
interfaces change semantics and operations depending upon the state of the waveform. If the
standard Networking API was not designed to that type of state semantics, then the Translation
Shims become more difficult so that eventually it becomes easier to just edit or rewrite the
application than it is to use the translation shim.
3.1.1.6.1.3 What is the impact of the Networking API Service Definition approach on the

current SCA definition? And does it affect portability?
1. Does the Networking API approach change the definition of any existing interfaces? Depends
upon the outcome of whether the SCA should add a Reset operation or whether this Networking
API Service Definition approach should use some combination of Stop, Config, and Initialize.
2. How many new interfaces are created by the Networking API approach? Only one new
interface consisting of eight new operations is required for this Networking API approach. Note
that this new interface would be defined “outside” the Core Framework so that this Networking
API approach does not impact the Core Framework
3. What is the impact of the Networking API approach on the Core Framework? The Core
Framework will have to be able to track Networking API Service Definition GUIDs and version
numbers in resource profiles so that it can instantiate resources that can interoperate.

3.1.1.6.2 Able to support new networking and non-networking waveforms
Yes, by modifying already developed Networking API Service Definitions and changing the
version number of creating a new Networking API Service Definition and getting a new GUID.
3.1.1.6.2.1 Does the Networking API Service Definition approach allow incorporation of

extensions for new functionality?
Yes, by creating a new waveform definition or extension with its own globally unique ID that
describes which operations are used and what the name/value pairs are.
3.1.1.6.2.2 Does the Networking API Service Definition approach support future waveforms in

a consistent manner (e.g. reuse of the Networking API for multiple future
waveforms)?

Yes, by creating a new waveform definition or extension with its own globally unique ID that
describes which operations are used and what the name/value pairs are.
3.1.1.6.2.3 Does the Networking API Service Definition approach support creation of

Networking APIs that can be used by networking and non-networking waveforms?
Yes, by creating a new waveform definition or extension with its own globally unique ID that
describes which operations are used and what the name/value pairs are.
3.1.1.6.2.4 Is there a projected waveform that cannot be supported by the Networking API

Service Definition approach?
No, since the twelve operations specified by Networking API Service Definition approach
support operations needed by waveforms at the Modem through Transport protocol layers and
the implementer has the freedom and flexibility to define their control and traffic parameters as
needed.

MSRC-5000SRD
Appendix D

D-3-9

3.1.1.6.3 Able to support legacy networking and non-networking waveforms
3.1.1.6.3.1 Does the Networking API Service Definition approach support low-overhead,

efficient transfer of control and traffic across the Networking API?
This service definition approach has more overhead for sending control (due to the parsing of
the name/value pairs) than an approach that passes parameters is specific IDL without any
name/value pairs. Note that this service definition approach could provide significantly lower
overhead operation operating with a transfer mechanism that supports passing by reference as
compared to a transfer mechanism that enforces pass by value.
3.1.1.6.3.2 Does the Networking API Service Definition approach allow incorporation of

extensions for new functionality?
Yes, by creating a new waveform definition or extension with its own globally unique ID that
describes which operations are used and what the name/value pairs are.
3.1.1.6.3.3 Does the Networking API Service Definition approach support legacy networking

waveforms in a consistent manner (e.g. reuse of the Networking API for multiple
legacy waveforms)?

The Networking API provides a consistent set of operations (Config, Query, etc) upon which to
standardize the Networking API definitions for a particular waveform. Thus, it provides
consistency in operations.
The Networking API allows great flexibility in defining the name/value pairs and deciding which
operations to support for a particular instantiation of the Networking API for a given waveform
or waveforms. The actual instantiation is identified by the globally unique ID. Whether these
name/value pairs are consistent across multiply waveforms is a function of the designers of the
Networking API instantiations and the configuration control board that decides which
Networking API instantiations should be selected as standards.
3.1.1.6.3.4 Does the Networking API Service Definition approach support creation of

Networking APIs that can be used by networking and non-networking waveforms?
Yes, the set of operations support both and name/value pairs can be defined to support both.
3.1.1.6.3.5 Is there a known waveform that cannot be supported by the Networking API Service

Definition approach?
No, and the IPT considered the operations required by the JTRS legacy waveforms.

3.1.1.6.4 Performance (Efficiency/Latency)
3.1.1.6.4.1 Does the Networking API Service Definition approach support low-overhead,

efficient transfer of control and traffic across the Networking API?
This service definition approach has more overhead for sending control (due to the parsing of
the name/value pairs) than an approach that passes parameters is specific IDL without any
name/value pairs. Note that this service definition approach could provide significantly lower
overhead operation operating with a transfer mechanism that supports passing by reference as
compared to a transfer mechanism that enforces pass by value.
Note that Name/Value pairs are passed in CORBA IDL using the “Any” data type. Any’s are
significantly slower (often having latencies twice as large as other data types such as Short,
Long, or Records) according to data from the following published research:

MSRC-5000SRD
Appendix D

D-3-10

DII COE Real-Time ORB Trade Study Release
Performed by Boeing for ESC/PAM
Contract Number F34601-96-C-0720 98-ESC-13
Document Number D204-31159-1 ORIG
http://www.ois.com/technical/rt_diicoe/release.html
Research on Real-time CORBA
Electrical and Computer Engineering, University of California, Irvine
http://www.cs.wustl.edu/~schmidt/corba-research-realtime.html

Thus, the use of Name/Value pairs above CORBA as the Transfer Mechanism will have
significantly slower performance than the use of other service definitions above CORBA.
3.1.1.6.4.2 Does the Networking API Service Definition approach support high data throughput,

low latency control?
Control using this Networking API approach has a small additional latency of the name/value
pair look-up as compared to an approach using IDL attributes.
3.1.1.6.4.3 How is performance affected by any required message parsing within the producer

and consumer resources?
Performance is less efficient using this approach as compared to a “pure IDL” approach due to
the additional parsing required by the name/value pairs.

3.1.1.6.5 Extensibility
3.1.1.6.5.1 Does the Networking API Service Definition approach allow Networking API

definition to be extended to support new waveform interfaces, functionality,
representation, and mechanisms?

Yes, by modifying already developed Networking API Service Definitions and changing the
version number of creating a new Networking API Service Definition and getting a new GUID.
3.1.1.6.5.2 Does a mechanism(s) exist to limit proliferation of published Networking API

extensions?
This Networking API approach per se does not have any mechanisms to limit proliferation of
published Networking API extensions. However, this approach assumes that there is a standard
configuration control body that determines which published Networking API extensions are the
“standard” Networking API for a given waveform. In that sense it is very similar to SNMP
which will support a plethora of MIB definitions, but has a limited set of MIBs defined by the
IETF as mandatory.

3.1.1.6.6 Networking API Reuse at same layer
3.1.1.6.6.1 Does the Networking API Service Definition approach foster Networking API reuse

at the same layer, e.g. use the same modem Networking API definition for multiple
(different) waveforms?

Although this approach has a small number of operations, this approach does not prohibit but
does not foster reuse since it does not mandate common name/value pairs. The implementer is
allowed, but not required to provide such reuse. Also, the configuration control body could

MSRC-5000SRD
Appendix D

D-3-11

foster such reuse through what Networking API Service Definitions it chooses to label as
mandatory, recommended, or other.
3.1.1.6.6.2 Does the Networking API Service Definition approach foster commonality of

interface?
1. Common Operation Set? Yes through the small set of operations.
2. Common Parameter Set? No (although the standard configuration control body could foster
such commonality).
3. Common Message/Data Format? Partially yes because it does have a common operation
format, although the actual format of the name/value pairs could be different (i.e. have different
value structures).

3.1.1.6.7 Component Interoperability (within the box, component plug and play)
3.1.1.6.7.1 Does the Networking API Service Definition approach foster development of

Networking APIs that allow individual waveform components to be reused by other
waveforms?

No, the Networking API itself does not per se, but the concept of a standard configuration body
coupled with the globally unique IDs does foster such development.
3.1.1.6.7.2 Do the Networking API definition, implementation, and configuration control

methods support component interoperability?
1. Does the Networking API approach support interface negotiation (e.g. Global User ID)? Yes
2. Does the Networking API approach support interface version query? Yes
3. Does the Networking API approach support backward interface compatibility? Yes, through
GUID & version identification. In order to support backward compatibility, the waveform needs
to support previous versions of the same Networking API Service Definition or multiple different
Networking API Service Definitions for the same waveform.

3.1.1.6.8 Cost
3.1.1.6.8.1 Is the Networking API Service Definition approach a cost driver?
1. Implementation Cost? Moderately higher than “pure IDL” due to second layer of name/value
pair representations, but much less than allowing GUID only and any functional &
representation definition as long as it is documented and identified by the GUID. (Should be
similar to that required to implement SNMP & SNMP MIBs. The cost could significantly drop
with the introduction of name/value pair compilers and development tools similar to those used
by SNMP.) Note that the actual cost will vary depending upon the number of parameters and
their complexity. This similar to how SNMP MIB implementation costs vary based upon the
number and type of parameters supported.
2. Maintenance Cost? Moderately higher than “pure IDL” due to second layer of name/value
pair representations, but much less than allowing GUID only and any functional &
representation definition as long as it is documented and identified by the GUID. (Should be
similar to that required to maintain SNMP & SNMP MIBs. The cost could significantly drop
with the introduction of name/value pair compilers and development tools similar to those used
by SNMP.)

MSRC-5000SRD
Appendix D

D-3-12

3. Porting Cost? If talking with applications that already understand/support Networking API,
then it should be the same to slightly higher than “pure IDL” due to second layer of name/value
pair representations. (Similar to how inexpensive it is to port SNMP applications & agents.)

3.1.1.6.9 Commercial Acceptance
3.1.1.6.9.1 Does the Networking API Service Definition approach have current or projected

commercial acceptance, (e.g. SDRF, IEEE, OMG, or de facto)? (No, some, or
widespread commercial acceptance?)

Many wireless standards are being developed due to the rapid explosion in commercial wireless
products. Although we do not know which of these commercial initiatives will achieve
commercial de facto standard acceptance similar to the Hayes modem AT command set, several
such interface de facto standards are bound to arise. The one that wins is probably going to be
based around getting initial market penetration in both the commercial cellular data market, the
wireless LAN market, and the consumer home/personal network market. Since this Networking
API is being defined for JTRS which is focused on military applications, it is not likely that this
Networking API (nor any Networking APIs) will achieve widespread commercial acceptance.
Although it is likely that any JTRS Networking API will achieve some commercial acceptance
(assuming there are no technical problems with the Networking API). Since the JTRS addresses
a large, important military market (although small in comparison to the commercial market),
any JTRS Networking API that does not have technical problems is likely to be accepted by the
SDRF and/or the IEEE.
Since, this Networking API approach has similarities to SNMP, which has widespread
commercial acceptance and also can use the IDL transport mechanisms, so should be no
technical reasons that the commercial world would not accept it.
Thus, the combination of the exploding commercial wireless market coupled with the fact that
this Networking API approach has not technical negatives means that this approach, if selected
as the JTRS Networking API, would likely achieve some commercial acceptance and become a
SDRF and/or IEEE standard.
3.1.1.6.9.2 Does the Networking API Service Definition approach foster the adoption of

Networking APIs with current or projected commercial acceptance, (e.g. DLPI,
Sockets, de facto (Microsoft))? (No, some, or widespread commercial acceptance?)

No. This Networking API approach has similarities to SNMP but is different. It will allow
Networking API instantiations that are functionally similar to some commercial standards, but
the representation will be different.

3.1.1.6.10 Security
This section requires further work and coordination with the Security IPT.
3.1.1.6.10.1 Do the JTRS security requirements prevent the use of this Networking API definition

or implementation?
1. Use of IDL Networking API definition if red and black objects can only communicate through
INFOSEC adapters? This is a question if all messages flowing from red to black must pass
through the generic message interface of an INFOSEC adapter. How can IDL interface
definitions be used between red and black objects?
A complete answer will await meeting with the Security IPT.

MSRC-5000SRD
Appendix D

D-3-13

3.1.1.6.11 Ability to Adapt to Commercial Trends
3.1.1.6.11.1 Is the Networking API Service Definition approach able to adapt to emerging

commercial networking standards?
This Networking API Service Definition approach will be able to adapt functionally to emerging
commercial standards through its use of the small list of operations and a very flexible
name/value pair definition. However, this approach will be unlikely to adapt and reuse
emerging commercial standards as is.

MSRC-5000SRD
Appendix D

D-3-14

3.1.2 Option 2 – Super Networking API
Interface Type: Networking API Service Definition

Name: Option 2 - Super Networking API

Date: 31 MAR 00

Revision: 5.0

Author: M. Di Mare

Company: BAE SYSTEMS

3.1.2.1 Description
The Super Networking API is a term used to describe the goal of defining a single universal
interface for all waveform applications. Each level; Network, Link, and Modem would have its
own Super Networking API and all JTRS compliant applications would use these Networking
APIs when crossing these OSI boundaries.

3.1.2.2 Diagram
The Super Networking API approach can best be illustrated by providing an example. The
following diagram shows a preliminary Modem Networking API. This listing represents a
starting point, as additional waveform requirements are defined, the list of interfaces would
grow.

MSRC-5000SRD
Appendix D

D-3-15

SuperModemResource

s etTimeOfDay()
s etDate()
reques tNewTimeOfDayData()
getTimeOfDay()
getDate()
configure()
query()
runTest()
in itialize()
releas eObject()
s tart()
s top()
getInputPort()
getOutputPort()
s etSquelch()
notifySignalA chieved()
s etTXPowerLevel()
s etScanFrequencyLis t()
s etTextM ode()
s etDataMode()
s tartScan()
s topScan()
getSignalA chieved()
getTXPowerLevel()
getScanFrequencyLis t()
getSquelch()
getTextM ode()
getDataMode()
getFrequencyBand()
getModemVers ion()
getFrequency()
s etFrequency()
s etXmitMode()
s etManualFrequency()
getModulation()
s etModulation()
adjustSyncTime()
adjus tDataRate()
not ifySignalDetected()
s etA GC_Squelch()
getA GC_Squelch()
getLas tScanFrequency()
getXmitMode()
activatePreset()
eras eMW OD()
reques tM W OD()
s etMW OD()
reques tNewTOD()
s topNewTOD()
s etFMT_Frequencies ()
reques tFM T_Frequencies()
s etMode()
reques tNetNumber()
s etNetNumber()
tran s mitTO D()
s etScanNetLis t()
getMW OD()
getFMT_Frequencies ()
getMode()
getNetNumber()
getA ctivePreset()
getPresets()
clearPreset()
s torePres et()
verifyMW ODDatePres ent()
verifyMW ODPres ent()
verifyTODPres ent()
clearA llPres ets ()
getScanNetLis t()
getLas tScanNet()
verifyNetNumber()
s etHops etNetNumber()
s etMode()
clearPreset()
zeroize()
reques tNetTime()
ge tNetTime()
s endERF_Mes sage()
getHoldingNumber()
s etHops etLateEntry()
getPreset()
getA ctivePreset()
getPresets()
getNetMas ter()
getLockouts()
s etPreset()
s etHolding()
activatePreset()
loadPres et()
clearHolding()
s torePres et()
getMode()

<<Interface>>

3.1.2.3 Theory of Operation:
Using the Super Networking API approach, a single interface for each layer of the network stack
would be established. This interface would have to be robust enough to support all existing
waveforms and all future waveforms targeted for the JTRS product line.

The Super Networking API is hard, fast and well defined, meaning all interfaces would have
defined data typed. The only way to change a Super Networking API would be to update the

MSRC-5000SRD
Appendix D

D-3-16

interface with each revision of the SCA. New waveforms would be forced to operate within the
boundaries of the existing Networking API definitions

With respect to the Link and Network the super Networking API approach may meet the needs
of the JTRS user community. The utility of the super NPAI approach with respect to the modem
interface is questionable.

The Modem Networking API presents several problems:

• There are a variety of modem products available. The configuration and control interfaces
required by the Link layer software to ensure an orderly flow of data are often low-latency
interfaces and unique to each hardware device.

• There are a variety of waveforms that need support. The Modem Networking API will most
likely be required to support all JTRS waveforms, both networking and non-networking. The
Modem Networking API would therefore need to be inclusive of all waveform unique
interfaces.

• Each of the interfaces defined in IDL will impact the Core Framework (CF)
It should be noted that the adoption of a Super Networking API approach may invalidate the 2A
prototypes currently in development.

3.1.2.4 OE
This approach requires support within the OE to help negotiate interfaces during resource
instantiation.

The detailed structure of this approach means that some Networking API mechanisms may be
chosen that lie outside the approach used by the OE (i.e. do not use the message interface). The
CF may have to be modified as a result.

3.1.2.5 Protocol Layer Applicability
The adoption of a single interface at the Link and or Network layers seems like a reasonable
expectation. There are commercially available API definitions, such as DLPI and NPI, that may
satisfy this need. However at the Modem (physical) layer a single unified interface definition
may be difficult to achieve.

3.1.2.6 Networking API FOM Analysis

3.1.2.6.1 Waveform Portability
Does the Networking API functional and representation definition approach foster waveform
portability?

Yes, by using, at each layer, a single Networking API for all waveform applications, impact to
the CF is minimized and therefore compatibility problems between various platforms should also
be minimized.
Note: It is assumed that 'waveform portability' means porting a complete waveform (and no
hardware) from one JTRS platform to another, and not mixing and matching waveform
components.

MSRC-5000SRD
Appendix D

D-3-17

3.1.2.6.1.1 Identify the porting steps required to take a waveform to another JTRS Platform and
evaluate the impact that the Networking API functional and representation definition
approach has on that process.

3.1.2.6.1.1.1 Porting Classification
Porting activities are identified in the following table.

Stimulus Description Classification
Environment
Change:Different Processor

Waveform must be ported to a different processor Non-recurring

Environment
Change:Different OS

Waveform must be moved to a different OS Non-recurring

Environment
Change:Different
Programming
Language

Waveform Objects must interact with objects on the
new platform that are written in a different language

Non-recurring

Environment Change:
Different Platform
Hardware

Waveform is hosted on new platform hardware that
may require additional or different control, e.g.
modem, INFSOEC, red I/O

Non-recurring

Environment Change:
Different Transport
Mechanism

Waveform is hosted on a new platform that uses a
different transport mechanism than the source
platform

Non-recurring

3.1.2.6.1.1.2 Porting Steps
Each porting activity will require one or more of the following steps. Evaluate each Networking
API approach with respect to whether or not that approach causes additional steps to be required
in executing the waveform port.

Porting Step Description Effort Level
Direct Rehost Same processors, OSs etc. – No changes required None
Recompile Recompile of those portions of the waveform that are

hosted on a different processor
Minimal

Translation Shim Does the Networking API approach require that shims
be added to the waveform to port to the new platform?

Moderate

Edit/ReWrite Does the Networking API approach require such
drastic code changes that edit/rewrite is necessary?

Moderate-
Extensive

The following table lists the projected porting steps (from x.6.1.1.2) for each type of stimulus
(from x.6.1.1.1):

MSRC-5000SRD
Appendix D

D-3-18

Stimulus Projected Porting Step(s)
Environment Change: Different Processor
(assume same hardware platform, OS,
transport mechanism & languages)

No Networking API effect or recompile depending on
the transfer mechanism.

Environment Change: Different OS (assume
same hardware platform, processor,
transport mechanism & languages)

No Networking API effect.

Environment Change: Different
Programming Language (assume same
hardware platform, processor, transport
mechanism & OS)

No Networking API effect.

Environment Change:
Different Platform Hardware
(assume same hardware platform, processor,
OS, transport mechanism & language)

No Networking API effect..

Environment Change:
Different Transport Mechanism (assume
same hardware platform, processor, OS &
language)

No Networking API effect or recompile depending on
the transfer mechanism. Possibility that it could be
Direct Rehost if representation does not change and
slim possibility that it could be Edit/ReWrite if buffer
management, latencies, operational semantics (e.g.
half duplex versus full duplex) change.

3.1.2.6.1.2 Does the Networking API Service Definition foster waveform portability for
software that already supports an existing interface, e.g. ARINC 732?

No, a Super Networking API approach is unlikely to be plug-and-play compatible with any
existing standard.
3.1.2.6.1.3 What is the impact of the Networking API Service Definition approach on the

current SCA definition? And does it affect portability?

3.1.2.6.1.3.1 What is the impact of the Networking API functional and representation definition
approach on the current SCA definition?

1. Does the Networking API approach change the definition of any existing interfaces? This
approach would require the CF to define all Super Networking API operations in the IDL
interfaces. Based on this, the discovery of new operations would require update of the IDL.
2. How many new interfaces are created by the Networking API approach? Many as they are
discovered.
3. What is the impact of the Networking API approach on the Core Framework? The core
framework would be required to support all the interfaces defined in the Super Networking API.

3.1.2.6.1.3.2 What is the impact of the Networking API functional and representation definition
approach on the current or proposed SCA Configuration Control Board?

Any proposed changes or extensions to the existing Networking API would have to be reviewed
and approved by the SCA Configuration Control Board.
Major advantage:

Reduce the number of specific Networking API implementations
Useful in addressing security issues in monitoring the control/status bypass.

MSRC-5000SRD
Appendix D

D-3-19

Major disadvantage:

The complexity and the penalty that small waveforms have for supporting excess code that is not
used.
Any time that a new operation is identified the IDL must be updated. Considered an
unmanageable premise.

3.1.2.6.2 Able to support new networking and non-networking waveforms
No. This option would be defined based on the current waveforms. New functionality would
have to be incorporated into a revision of the SCA.
3.1.2.6.2.1 Does the Networking API Service Definition approach allow incorporation of

extensions for new functionality?
Limited. A Super Networking API approach may allow a developer to “pick and choose”
features as required, but new functionality would have to be incorporated into a revision of the
SCA.
3.1.2.6.2.2 Does the Networking API Service Definition approach support future waveforms in

a consistent manner (e.g. reuse of the Networking API for multiple future
waveforms)?

To some extent. Since future waveforms would be required to implement functionality using a
pre-defined interface, future waveform would be supported in a consistent manner. However,
some procedure would be needed to co-ordinate updates to the Networking API standards.
3.1.2.6.2.3 Does the Networking API Service Definition approach support creation of

Networking APIs that can be used by networking and non-networking waveforms?
Yes, to the extent that a single Networking API can support a wide variety of waveforms. Non-
networking waveforms would be most concerned with the Modem Networking API and care
should be taken to ensure that the interface does not prohibit it’s use in a non-networking way.
3.1.2.6.2.4 Is there a projected waveform that cannot be supported by the Networking API

Service Definition approach?
This is probably the greatest risk with the Super Networking API approach. It is nearly
impossible to say whether or not all waveforms can be implemented using a single interface
definition.

3.1.2.6.3 Able to support legacy networking and non-networking waveforms
3.1.2.6.3.1 Does the Networking API Service Definition approach support low-overhead,

efficient transfer of control and traffic across the Networking API?
No, a single Networking API used for all waveforms cannot be optimized for any single
application. Having to work “within the bounds” of an existing interface definition will
invariably result in “work around” situations.
A detailed Networking API definition could support efficient transfer of data, however
implementing a single API across several different hardware environments could produce wildly
different performance figures.
Approach allows for optimization for all known (projected) waveforms. The risk with this
approach is missing some operation.

MSRC-5000SRD
Appendix D

D-3-20

3.1.2.6.3.2 Does the Networking API Service Definition approach allow incorporation of
extensions for new functionality?

Limited. A Super Networking API approach may allow a developer to “pick and choose”
features as required, but new functionality would have to be incorporated into a revision of the
SCA.
Ideally, the Super Networking API would not require extensions. As new functionality is
identified the SCA would have to be revised to incorporate this new functionality.
Some type of mechanism for control of these extensions, if allowed, would be required. A
question would be a what rate would the extensions be allowed. What would be the affect of
extensions on fielded units.
3.1.2.6.3.3 Does the Networking API Service Definition support legacy networking waveforms

in a consistent manner (e.g. reuse of the Networking API for multiple legacy
waveforms)?

Support for legacy waveforms (network and non-network) are possible but the inclusion of all
exponentially increases the overall complexity of the Super Networking API. In addition, in
some cases short circuit of one or more of the protocol layers may be required causing
additional complexity.
3.1.2.6.3.4 Does the Networking API Service Definition support creation of Networking APIs

that can be used by networking and non-networking waveforms?
A Super Networking API approach does not prohibit use by networking or non-networking
waveforms. But the fact that all waveform applications would be required to use a single
interface definition does complicate the Networking API definition.
It becomes a complicated operation because all the operations to support both networking and
non-networking waveforms must be included.
3.1.2.6.3.5 Is there a known waveform that cannot be supported by the Service Definition

approach?
No.

3.1.2.6.4 Performance (Efficiency/Latency)
3.1.2.6.4.1 Does the Networking API functional and representation definition approach support

low-overhead, efficient transfer of control and traffic across the Networking API?
A detailed Networking API definition could support efficient transfer of data, however
implementing a single API across several different hardware environments could produce wildly
different performance figures.
 -- also --
See answer to x.6.3.1.
3.1.2.6.4.2 Does the Networking API functional and representation definition approach support

high data throughput, low latency control?
The Super Networking API would have to have provisions for handling high data rates. There is
nothing in the super Networking API approach that would prohibit the creation of high data rate
interface definitions.

MSRC-5000SRD
Appendix D

D-3-21

Passed by reference would be part of what would be supported by this alternate.
3.1.2.6.4.3 How is performance affected by any required message parsing within the producer

and consumer resources?
Because everything is explicitly defined (no any’s no name/value pairs) there would be no
required parsing and thus no impact.

3.1.2.6.5 Extensibility
3.1.2.6.5.1 Does the Networking API functional and representation definition approach allow

Networking API definition to be extended to support new waveform interfaces,
functionality, representation, and mechanisms?

No. The purpose of a Super Networking API is to eliminate the need for waveform-unique
interface extensions.
Yes, see answer to x.6.2.1.
3.1.2.6.5.2 Does a mechanism(s) exist to limit proliferation of published Networking API

extensions?
Yes, the adoption of the Super Networking API approach will eliminate (limit) the proliferation
of Networking API extensions. But the evolution of the SCA may require should method for
extensions and backward compatibility.

3.1.2.6.6 Networking API Reuse at same layer
3.1.2.6.6.1 Does the Networking API functional and representation definition approach foster

Networking API reuse at the same layer, e.g. use the same modem Networking API
definition for multiple (different) waveforms?

Yes, a Super Networking API approach would require Networking API reuse since all waveform
would be required to adopt the same Networking API definitions. An issue with the Super
Networking API is what is done with unsupported operations. If all operations must be
supported, a large amount of software overhead is envisioned that is required but may never be
used.
3.1.2.6.6.2 Does the Networking API functional and representation definition approach foster

commonality of interface?
1. Common Operation Set? Yes. Because of the single set of operations with the same
parameters.
2. Common Parameter Set? Yes. The Super Networking API has a single parameter set.
3. Common Message/Data Format? Yes. The Super Networking API, by definition has a
common message/data format.

3.1.2.6.7 Component Interoperability (within the box, component plug and play)
3.1.2.6.7.1 Does the Networking API functional and representation definition approach foster

development of Networking APIs that allow individual waveform components to be
reused by other waveforms?

Yes, all networking components would adhere to a single set of API definitions. This is one of
the strengths of the super Networking API approach.

MSRC-5000SRD
Appendix D

D-3-22

An issue is the consistent implementation (another layer of standardization) for ensuring what is
required to be implemented and what could be left out for a particular waveform.
3.1.2.6.7.2 Do the Networking API definition, implementation, and configuration control

methods support component interoperability?
1. Does the Networking API approach support interface negotiation (e.g. Global User ID)? Yes.
There will be a need for tracking which subset of the Super Networking API commands are in
use.

2. Does the Networking API approach support interface version query? Yes. As part of the
definition of the Super Networking API, the approach would support this operation.
3. Does the Networking API approach support backward interface compatibility? Yes. By
definition, the Super Networking API includes all of the legacy and future operations and
parameters.

3.1.2.6.8 Cost
3.1.2.6.8.1 Is the Networking API Service Definition a cost driver??
1. Implementation Cost? Implementation cost is relatively high, because a single Networking
API would be more complex than a waveform specific one and thus would require a greater
number of hours than a specific waveform Networking API for implementation.
2. Maintenance Cost? Moderate, a super Networking API approach would generate a
continuously evolving standard. Waveform applications may need to “upgrade” to newer
standards to remain compatible.
3. Porting Cost? Low, since there would be a single Networking API standard at each layer,
application porting issues should be well documented and understood for every JTRS compliant
product.
It different applications don’t implement all of the operations, then the cost may be high.
Two ways to lay out the requirements: 1) specify that all operations must be supported either
implementing the function or an exception. All applications know that all operations will get a
response. 2) waveform implements only certain operations and then it is not known what
operations are supported on a port.

3.1.2.6.9 Commercial Acceptance
3.1.2.6.9.1 Does the Networking API functional and representation definition approach have

current or projected commercial acceptance, (e.g. SDRF, IEEE, OMG, or defacto)?
1. No commercial acceptance?

2. Some commercial acceptance?

3. Widespread commercial acceptance?

The Super Networking API approach would have no commercial acceptance. At the higher OSI
levels (Link and Network) it might be possible to implement a commercial standard for many
waveforms (DLPI, for Link for example). However, since the Super Networking API is required
to support all JTRS waveforms, there would most likely be no suitable commercial standard.
Since the super Networking API would be larger and more complex than what is required for

MSRC-5000SRD
Appendix D

D-3-23

any particular waveform, it is unlikely that a commercial venture would adopt it because of the
excess code that is included with the Super Networking API. For waveforms that require a very
small subset of the Super Networking API there would be a very large overhead penalty to carry
along all of the excess code. This would be driver for memory requirements on this small
subsets.
3.1.2.6.9.2 Does the Networking API functional and representation definition approach foster

the adoption of Networking APIs with current or projected commercial acceptance,
(e.g. DLPI, Sockets, defacto (Microsoft))?

1. No commercial acceptance?

2. Some commercial acceptance?

3. Widespread commercial acceptance?

No, it is unlikely that any existing interface definition would be suitable for all JTRS waveform.

3.1.2.6.10 Security
3.1.2.6.10.1 Do the JTRS security requirements prevent the use of this Networking API definition

or implementation?
1. Use of IDL Networking API definition if red and black objects can only communicate
through INFOSEC adapters? This is a question if all messages flowing from red to black must
pass through the generic message interface of an INFOSEC adapter. How can IDL interface
definitions be used between red and black objects?
No, a single Super Networking API would simplify security issues. It would be a big set but it
would known and quantifiable.

3.1.2.6.11 Ability to Adapt to Commercial Trends
3.1.2.6.11.1 Is the Networking API functional and representation definition approach able to

adapt to emerging commercial networking standards?
No, once an interface definition is established, newer versions could not adopt new emerging
networking standards. That would invalidate existing waveform products.

MSRC-5000SRD
Appendix D

D-3-24

3.1.3 Option 3 - Commercial Model Networking API Service Definition
Interface Type: Networking API Service Definition

Name: Option 3 – Commercial Model Networking API Service Definition

Date: 20 March 2000

Revision: 3.0

Authors: Jim Stevens (jasteven@collins.rockwell.com) &

Jackson Anderson (ajanders@collins.rockwell.com)

Company: Rockwell Collins

3.1.3.1 Description
This approach supports the flexibility of the way the commercial world creates APIs combined
with a configuration control process (similar to that used for controlling MIBs in the SNMP
protocol) to support interoperability and portability. Similarly to how commercial networking
vendors can create their own APIs or support standard or de facto APIs, JTRS waveform
implementers can create their own Networking APIs or use pre-defined Networking APIs. If a
waveform implementer creates a new Networking API, they register it with a JTRS Networking
API configuration control board. The JTRS Networking API configuration board determines the
status (i.e. Mandatory, Recommended, Other). This Networking-API Networking API Service
Definition was presented at JTRS Step 2A IPR#3.

3.1.3.2 Diagram
The following diagram shows the generic and flexible concept behind this Networking API.

Globally Unique
Identifier (GUID)

GUID#
Interface Definition

- functional definition(s)
- implementation
representation(s)

Waveform(s) Supported
- list of waveforms & status
(mandatory, recommended,
optional, etc)

List of NAPI
Instantiations

MSRC-5000SRD
Appendix D

D-3-25

3.1.3.3 Theory of Operation
This Networking-API Networking API Service Definition alternative defines a method of
interface configuration control, interface version identification, and interface negotiation. It was
designed to give vendors and users great freedom and flexibility in trading off performance,
portability and cost drivers. It promotes open interface standards for waveforms and allows
customers to assess the impact of changes. Its configuration control provides mechanism for
managing evolution and tracking changes. The flexible service definition was modeled after the
Microsoft COM/DCOM approach to service definitions and the configuration control approach
was modeled after that used to manage MIBs for SNMP and CMIP.

A Networking-API Service Definition will be defined at the functional level for a waveform or
set of waveforms. The developer of a waveform implementation will publish the Networking
APIs of its visible network components. Each Networking-API Service Definition will be
assigned a globally unique identifier (GUID) that:

• Specifies the defined Networking-API service interface

• Specifies the version number of the interface

• Must be visible to the Domain Manager profile.
There will be a controlling body for GUIDs that controls the control assignment of GUIDs. This
configuration control body should be an open standards body similar to the IETF or the IEEE.
This controlling body would assign a status for each Networking-API Service Definition similar
to the way that the IETF assigns statuses to Internet standards today. Potential statuses could
include:

• mandatory for a particular waveform or set of waveforms (i.e. if a vendor implements one of
the particular waveforms, then they must implement this Networking-API Service Definition
to be JTRS compliant)

• recommended for a particular waveform or set of waveforms (i.e. if a vendor implements one
of the particular waveforms, then it is recommended, but not required, that they implement
this Networking-API Service Definition to be JTRS compliant)

• allowable for a particular waveform or set of waveforms (i.e. the vendor is allowed, but not
required to implement this Networking-API Service Definition to be JTRS for one of the
particular waveforms)

• Other possible statuses including experimental, not recommended, etc.
Any Networking-API Service Definitions that are chosen as JTRS standards (i.e., mandatory or
recommended) must be published and non-proprietary. However, vendors can choose to keep
the details of particular Networking APIs private or proprietary (so that the status is likely to be
allowable or some other.) The owner of interface controls version numbering. This is similar to
the approach used to managing MIBs in SNMP and CMIP.

For example, suppose that there is a JTRS mandatory Networking-API Service Definition for the
SINCGARS waveform. If a vendor develops a new proprietary way to mitigate co-site
interference that requires a new SINCGARS Networking-API Service Definition, then that
vendor could get a GUID for its new Networking-API Service Definition. The vendor would
have the freedom to keep the details of the new Networking-API Service Definition proprietary
or to make it open. However, the new Networking-API Service Definition could only become

MSRC-5000SRD
Appendix D

D-3-26

mandatory or recommended if the vendor made the Networking-API Service Definition open. In
either case, the vendor could now develop and sell a SINCGARS modem object that supports
both the mandatory Networking-API Service Definition and this new allowable Networking-API
Service Definition. Since there is a GUID, the Domain Manager can determine at instantiation
whether the SINCGARS modem object is being linked together with other objects that know
how to use the allowable SINCGARS service definition. If other such objects were available,
then a better co-site mitigation JTRS radio would result. If the other objects only knew how to
support the mandatory Networking-API Service Definition, then an operational JTRS radio
would result that runs the SINCGARS waveform.

All visible interfaces will be uniquely identified. A mechanism will be provided within the
Domain/Resource Manager to identify the interfaces used by the resources. When the
Domain/Resource Manager instantiates a Resource to satisfy a User request it selects the
resource with matching interface.

3.1.3.4 Operational Environment (OE)
This approach requires support within the OE resource profiles for GUIDs so that it can
determine which resources have compatible Networking-API Service Definitions when
instantiating waveforms.

Waveform developers are free to define their Networking-API Service Definitions using the OE
Message Interface or to develop a new CORBA interface that is not part of the OE. In either
case, since it is defined as part of the Networking-API Service Definition, two objects that
implement the Networking-API service defined by a given GUID will be interoperable.

3.1.3.5 Protocol Layer Applicability
This Networking-API Service Definition alternative is applicable to any protocol layer due to
great flexibility.

3.1.3.6 Networking-API FOM Analysis

3.1.3.6.1 Waveform Portability
Does the Networking-API Service Definition approach foster waveform portability?

Yes, if two implementations use the same Networking-API definition. They are most likely to do
so for Networking-API definitions that are made “mandatory” or “recommended.”
Note: It is assumed that 'waveform portability' means porting a complete waveform (and no
hardware) from one JTRS platform to another, and not mixing and matching waveform
components.

3.1.3.6.1.1 Identify the porting steps required to take a waveform to another JTRS Platform and
evaluate the impact that the Networking-API Service Definition approach has on that
process.

The following table lists the projected porting steps for a wide range of porting stimulus.

MSRC-5000SRD
Appendix D

D-3-27

Porting Stimulus Description Projected Porting Steps Required
Because of the Networking-API
Networking API Service Definition

Environment Change:
Different Processor

Waveform must be ported to a different
processor

 No Networking-API effect.

Environment Change:
Different OS

Waveform must be moved to a different OS No Networking-API effect.

Environment Change:
Different Programming
Language

Waveform Objects must interact with objects
on the new platform that are written in a
different language

No Networking-API effect.

Environment Change:
Different Platform
Hardware

Waveform is hosted on new platform hardware
that may require additional or different control,
e.g. modem, INFSOEC, red I/O

No Networking-API effect.

Environment Change:
Different Transport
Mechanism

Waveform is hosted on a new platform that
uses a different transport mechanism than the
source platform

Direct Rehost or Translation Shim
depending on the transport
mechanism. (Note: the IDL/ORB
abstracts interfaces to other objects.)
If the transport is not abstracted by
the ORD it will require a
Translation Shim or Edit/Rewrite

The projected porting steps are defined from least to most effort in the following table.
Porting Step Description Effort Level
Direct Rehost Same processors, OSs etc. – No changes required None

Recompile Recompile of those portions of the waveform that are hosted on
a different processor

Minimal

Translation Shim Does the Networking-API approach require that shims be added
to the waveform to port to the new platform?

Moderate

Edit/ReWrite Does the Networking-API approach require such drastic code
changes that edit/rewrite is necessary?

Moderate-Extensive

3.1.3.6.1.2 Does the Networking-API Service Definition approach foster waveform portability
for software that already supports an existing interface, e.g. ARINC 732?

No, this approach does not foster portability between Networking-API Service Definitions for the
same waveform because it does not force the waveform developer to use the same operation(s),
parameters, signals, etc. Since this approach does not impose a minimal set of operations (such
as the Small Service Definition Using Name/Value Pairs), it will be more likely to require an
Edit/ReWrite than it is to require a Translation Shim.
3.1.3.6.1.3 What is the impact of the Networking-API Service Definition approach on the

current SCA definition? And does it affect portability?
1. Does the Networking-API approach change the definition of any existing interfaces? No.
2. How many new interfaces are created by the Networking-API approach? The number of new
interfaces can vary for each different Networking-API Service Definition. Any new interfaces
will be defined outside the Core Framework and thus “bypass the core framework.” Since this
Networking-API approach can use the Core Framework interfaces “as is” or defined new
interfaces “outside” the Core Framework, this Networking-API approach does not impact the
Core Framework

MSRC-5000SRD
Appendix D

D-3-28

3. What is the impact of the Networking-API approach on the Core Framework? The Core
Framework will have to be able to track Networking-API Service Definition GUIDs and version
numbers in resource profiles so that it can instantiate resources that can interoperate.

3.1.3.6.2 Able to support new networking and non-networking waveforms
Yes, by modifying already developed Networking-API Service Definitions and changing the
version number of creating a new Networking-API Service Definition and getting a new GUID.
3.1.3.6.2.1 Does the Networking-API Service Definition approach allow incorporation of

extensions for new functionality?
Yes, by creating a new Networking-API Service Definition version or Networking-API Service
Definition with a new GUID.
3.1.3.6.2.2 Does the Networking-API Service Definition approach support future waveforms in

a consistent manner (e.g. reuse of the Networking-API for multiple future
waveforms)?

Not really, since this Networking-API Service Definition approach has complete freedom and
flexibility to define whatever an implementer needs. However, the configuration board can
impose consistency by limiting what it really depends upon the particular service chosen for a
given Networking-API Service Definition.
3.1.3.6.2.3 Does the Networking-API Service Definition approach support creation of

Networking-APIs that can be used by networking and non-networking waveforms?
Yes, since this Networking-API Service Definition approach has complete freedom and flexibility
to define whatever an implementer needs.
3.1.3.6.2.4 Is there a projected waveform that cannot be supported by the Networking-API

Service Definition approach?
No, since this Networking-API Service Definition approach has complete freedom and flexibility
to define whatever an implementer needs.

3.1.3.6.3 Able to support legacy networking and non-networking waveforms
Yes, through its complete freedom and flexibility to define whatever an implementer needs.
3.1.3.6.3.1 Does the Networking-API Service Definition approach support low-overhead,

efficient transfer of control and traffic across the Networking-API?
Yes, through its complete freedom and flexibility to define whatever an implementer needs.

3.1.3.6.3.2 Does the Networking-API Service Definition approach allow incorporation of
extensions for new functionality?

Yes, through its complete freedom and flexibility to define a new Networking-API Service
Definition for extensions. The new Networking-API Service Definition could be a simple change
of an existing Networking-API Service Definition (in which case the version number is likely to
be incremented rather than assigning a new GUID). Alternatively, the new Networking-API
Service Definition could be sufficiently different from other Networking-API Service Definitions
that a new GUID is assigned. Note that inheritance is allowed, but not required for this
approach.

MSRC-5000SRD
Appendix D

D-3-29

3.1.3.6.3.3 Does the Networking-API Service Definition approach support legacy networking
waveforms in a consistent manner (e.g. reuse of the Networking-API for multiple
legacy waveforms)?

Not really since the Networking-API will let legacy waveforms continue to use their existing
interface by assigning a GUID to that given interface and publishing the interface if it is
mandatory or recommended. However, the configuration control board can pursue such
consistency by limiting what it assigns the mandatory or recommended statuses to.
3.1.3.6.3.4 Does the Networking-API Service Definition approach support creation of

Networking-APIs that can be used by networking and non-networking waveforms?
Yes, through its complete freedom and flexibility to define whatever an implementer needs.
3.1.3.6.3.5 Is there a known waveform that cannot be supported by the Networking-API Service

Definition approach?
No, since the Networking-API has complete freedom and flexibility to define whatever an
implementer needs.

3.1.3.6.4 Performance (Efficiency/Latency)
3.1.3.6.4.1 Does the Networking-API Service Definition approach support low-overhead,

efficient transfer of control and traffic across the Networking-API?
Yes, through its complete freedom and flexibility to define whatever an implementer needs.
3.1.3.6.4.2 Does the Networking-API Service Definition approach support high data throughput,

low latency control?
Yes, through its complete freedom and flexibility to define whatever an implementer needs.
3.1.3.6.4.3 How is performance affected by any required message parsing within the producer

and consumer resources?
It will depend upon the actual representation chosen for a particular Networking-API definition.
If the approach is IDL specific then it would at least as fast as any other approach. The
implementer is given the freedom to develop an operations based Networking-API Service
Definition rather than a name/value based definition which would minimize any required
message parsing.

3.1.3.6.5 Extensibility
3.1.3.6.5.1 Does the Networking-API Service Definition approach allow Networking-API

definition to be extended to support new waveform interfaces, functionality,
representation, and mechanisms?

Yes, through its complete freedom and flexibility to define a new Networking-API Service
Definition for extensions. The new Networking-API Service Definition could be a simple change
of an existing Networking-API Service Definition (in which case the version number is likely to
be incremented rather than assigning a new GUID). Alternatively, the new Networking-API
Service Definition could be sufficiently different from other Networking-API Service Definitions
that a new GUID is assigned. Note that inheritance is allowed, but not required for this
approach.
3.1.3.6.5.2 Does a mechanism(s) exist to limit proliferation of published Networking-API

extensions?

MSRC-5000SRD
Appendix D

D-3-30

No, this Networking-API approach per se does not have any mechanisms to limit proliferation of
published Networking-API extensions. However, this approach assumes that there is a standard
configuration control body that determines which published Networking-API extensions are
“mandatory” and “recommended” for a given waveform. In that sense it is very similar to
SNMP which will allow a plethora of MIB definitions, but has the IETF define which MIBs are
the standard MIBs that all routers/hosts must/should support.

3.1.3.6.6 Networking-API Reuse at same layer
3.1.3.6.6.1 Does the Networking-API Service Definition approach foster Networking-API reuse

at the same layer, e.g. use the same modem Networking-API definition for multiple
(different) waveforms?

This approach does not prohibit but does not foster reuse since it does not mandate common
name/value pairs. The implementer is allowed, but not required to provide such reuse. Also, the
configuration control body could foster such reuse through what Networking-API Service
Definition it chooses to label as mandatory, recommended, or other.
3.1.3.6.6.2 Does the Networking-API Service Definition approach foster commonality of

interface?
1. Common Operation Set? No (although the standard configuration control body could foster
such commonality).
2. Common Parameter Set? No (although the standard configuration control body could foster
such commonality).
3. Common Message/Data Format? No (although the standard configuration control body could
foster such commonality).

3.1.3.6.7 Component Interoperability (within the box, component plug and play)
3.1.3.6.7.1 Does the Networking-API Service Definition approach foster development of

Networking-APIs that allow individual waveform components to be reused by other
waveforms?

No, the Networking-API itself does not per se, but the concept of a standard configuration body
coupled with the globally unique IDs does foster such development.
3.1.3.6.7.2 Do the Networking-API definition, implementation, and configuration control

methods support component interoperability?
1. Does the Networking-API approach support interface negotiation (e.g. Global User ID)? Yes.

2. Does the Networking-API approach support interface version query? Yes.
3. Does the Networking-API approach support backward interface compatibility? Yes, through
GUID & version identification. In order to support backward compatibility, the waveform needs
to support previous versions of the same Networking-API Service Definition or multiple different
Networking-API Service Definitions for the same waveform.

3.1.3.6.8 Cost
3.1.3.6.8.1 Is the Networking-API Service Definition approach a cost driver?

MSRC-5000SRD
Appendix D

D-3-31

1. Implementation Cost? The same or lower than “pure IDL” since the implementer has
complete freedom to define the interface within the constraints of giving it a GUID.
2. Maintenance Cost? Higher than “pure IDL” since the implementer will constantly have to
learn new Networking-API service approaches.
3. Porting Cost? Likely to be higher than “pure IDL” since there will be a good chance that
another resource may have implemented a different Networking-API. (Note however, that the
use of “mandatory” and “recommended” Networking-APIs could lower the porting cost down to
slightly higher than pure IDL.)

3.1.3.6.9 Commercial Acceptance
3.1.3.6.9.1 Does the Networking-API Service Definition approach have current or projected

commercial acceptance, (e.g. SDRF, IEEE, OMG, or de facto)? (No, some, or
widespread commercial acceptance?)

Many wireless standards are being developed due to the rapid explosion in commercial wireless
products. Although we do not know which of these commercial initiatives will achieve
commercial de facto standard acceptance similar to the Hayes modem AT command set, several
such interface de facto standards are bound to arise. The one that wins is probably going to be
based around getting initial market penetration in both the commercial cellular data market, the
wireless LAN market, and the consumer home/personal network market. Since this Networking-
API is being defined for JTRS which is focused on military applications, it is likely that this
Networking-API (nor any Networking-APIs) will achieve widespread commercial acceptance.
Although it is not likely that any JTRS Networking-API will achieve some commercial
acceptance (assuming there are no technical problems with the Networking-API). Since the
JTRS addresses a large, important military market (although small in comparison to the
commercial market), any JTRS Networking-API that does not have technical problems is likely to
be accepted by the SDRF and/or the IEEE.
Since, this Networking-API approach allows the reuse of existing commercial interfaces for
particular waveforms, it can get some commercial acceptance just by tracking with existing
commercial acceptances. Note that the high flexibility of this approach is likely to be a major
issue for a significant minority of engineers.
Thus, the combination of the exploding commercial wireless market coupled with the fact that
this Networking-API approach has not technical negatives means that this approach, if selected
as the JTRS Networking-API, would likely achieve some commercial acceptance and become a
SDRF and/or IEEE standard.
3.1.3.6.9.2 Does the Networking-API Service Definition approach foster the adoption of

Networking-APIs with current or projected commercial acceptance, (e.g. DLPI,
Sockets, or de facto (Microsoft))? (No commercial acceptance? Some commercial
acceptance? Or widespread commercial acceptance?)

Yes, this approach allows the Networking-API to adopt current and projected Networking-APIs
that are already in use.

3.1.3.6.10 Security
This section requires further work and coordination with the Security IPT.

MSRC-5000SRD
Appendix D

D-3-32

3.1.3.6.10.1 Do the JTRS security requirements prevent the use of this Networking-API
definition or implementation?

1. Use of IDL Networking-API definition if red and black objects can only communicate through
INFOSEC adapters? This is a question if all messages flowing from red to black must pass
through the generic message interface of an INFOSEC adapter. How can IDL interface
definitions be used between red and black objects?
2.

A complete answer will await meeting with the Security IPT, but there is likely to be a problem
with approach in passing control from Red to Black due to the unbounded nature of the interface
with respect to functional definitions and representation.

3.1.3.6.11 Ability to Adapt to Commercial Trends
3.1.3.6.11.1 Is the Networking-API Service Definition approach able to adapt to emerging

commercial networking standards?
Yes, due to its high flexibility.

MSRC-5000SRD
Appendix D

D-3-33

3.1.4 Option 4 - Commercial Model with Inheritance Networking API Service Definition
Interface Type: Networking API Service Definition

Name: Option 4 – Commercial Model with Inheritance Networking API Service
Definition

Date: 31 May 2000

Revision: 9.0

Author: Fred Mabe (fdmabe@collins.rockwell.com)

Company: Rockwell Collins

3.1.4.1 Description
The Networking API Service Definition for a waveform protocol layer details the operations
(primitives), the attributes (variables), their representation (structures, types, formats) and its
behavior. In order to obtain interoperability and interchangeability of the network protocol
entities standard and consistent interfaces are required. From a programmer’s perspective, to
reuse/port a existing network protocol entity, the Networking API Service Definition is the most
important part of the Networking API. It is important that the service definition provide inter-
operability independent of the actual software implementation of those entities. Networking API
Service Definitions are a method to document these interfaces. Creation of Networking API
Service Definitions via inheritance, supports the flexible object oriented approach used by the
commercial world. An object oriented approach facilitates polymorphism and code reuse. Like
C++ and other object oriented languages there must be a method to foster inheritance and
diminish the propensity of growth of inheritance trees. Figure 1 represents the path to reach
common Networking API Service Definitions via inheritance.

MSRC-5000SRD
Appendix D

D-3-34

3.1.4.2 Diagram

Vendor
B

Vendor
A

Vendor
B

Vendor
A

Today most
vendors have
unique
interfaces.

The SCA
fosters
common
interfaces via
inheritance.

Vendor
A& B

Overtime
interfaces
become
nearly
common.

Figure -1 Interface Convergence Diagram

3.1.4.3 Theory of Operation
The Interface Definition Language (IDL) will be used to define Networking API Service
Definitions to foster inheritance and interoperability. IDL provides a method to inherit from
multiple interfaces. IDL also separates implementation from specification. In addition, the
behavior and the states must be defined in the Networking API Service Definitions, to augment
the IDL, so the network protocol implementation can be abstracted as a black box. A Networking
API Service Definition is a contract between the service user and the service provider (e.g. Link
layer and a Modem). A particular Networking API Service Definition is uniquely identified by a
Universally Unique Identifier (UUID). Similarly to how commercial networking vendors can
create their own APIs or support standard or de facto APIs, waveform implementers can create
their own Networking API Service Definitions or use previously defined Networking API
Service Definitions. If a waveform implementer creates a new Networking API Service
Definition, they publish it and its associated UUID. Alternatively if an implementor creates
private Networking API Service Definition he may publish his UUID but not the service
definition. It is recommended that public Networking API Service Definitions be controlled by a
configuration board to control the propensity of growth of inheritance trees. The UUID used by
the Domain Manager to insure interoperability of serviced definitions shall be a single UUID that
identifies complete single interface that is the combination of inherited interface packages from

MSRC-5000SRD
Appendix D

D-3-35

the inheritance tree rather than the individual interface packages in the inheritance tree. For
example, two service definitions may be inherited to form a new Networking API serviced which
is a superset of the two inherited Networking API Service Definitions. This superset Networking
API Service Definition must be given a unique UUID separate from the inherited Networking
API Service Definitions. Creation of a Networking API Service Definition shall be
accomplished via one the following methods:

1. Reuse an existing Networking API Service Definition: If an existing Networking API
Service Definition is identical to the new protocol entity’s’ interface, or the new protocol entity
can easily be mapped to an existing Networking API Service Definition, the Networking API
Service Definition shall be reused. How these Networking APIs are written determines the extent
which they can be reused. For example if you define a F/A-18 Networking API Service
Definition it will not be very reusable. However if you define F/A-18 which is a collection of
multiple interfaces which can be inherited (e.g. situation display, tactical sensors, Navigation,
throttle ...) then reuse can occur

2. Reuse of existing Networking API Service Definitions via inheritance to create an new
Networking API Service Definition: The new Networking API interface shall be created from
parts of existing interfaces that may be inherited. How these Networking APIs are written
determines the extent which they can be reused. For example if you define a F/A-18 Networking
API Service Definition it will not be very reusable. However if you define F/A-18 which is a
collection of multiple interfaces which can be inherited (e.g. situation display, tactical sensors,
Navigation, throttle ...) then reuse can occur

3. Write the existing interface of the network protocol entity in IDL and create a new
Networking API Service Definition: If the protocol entity being ported has a standard
commercial interface that has not been document via an Networking API Service Definition,
import and publish the commercial standard via the Networking API Service Definition process.
This will allow commercial COTS software to be ported without modification.

4. Use an IDL wrapper/adapter to hide the incorporation of the new protocol: If porting a
network protocol entity which has a tight coupling with another piece of software or hardware,
the interface may be hidden via an IDL wrapper. For example if porting an IP and Ethernet
software package which is implemented in hardware (e.g. ASIC), a IDL wrapper would be
written to the highest layer the ASIC would expose (e.g. network interface). The ASIC would
have only a network Networking API Service Definition. Hidden via the IDL wrapper would be
the interfaces to the IP protocol and Ethernet. Also if porting an existing network protocol entity,
the network protocol entity has two or more layers which are always together and would never
be used separately, the interface between these layers may be hidden via an IDL wrapper.
However care must be taken in the decision to use an IDL wrapper because it effects the
portability of the network protocol entities hidden by the IDL wrapper.

In the above specified methods it is recommended that the implied numerical order of preference
be followed. All Networking API Service Definitions shall be written in IDL. The Networking
API Service Definitions shall describe behavior and state changes of the network protocol caused
by invoking primitives. Parameters are the data associated with the primitives. Networking API
Service Definitions may be written in "specific primitives/parameters": when a primitive is
invoked the client does not require further interpretation of the parameters to determine the
expected behavior (e.g. set_Frequency(in double frequency)), or "name/value pairs": when a
primitive is invoked the client does require further interpretation of the parameters to determine

MSRC-5000SRD
Appendix D

D-3-36

the expected behavior (e.g. command(in Any any_command)). It is recommend to avoid
"name/value pairs" and use the "specific primitives/parameters" because of extra processing
overhead associated with CORBA marshalling and interpretation of the "name/value pairs".
However there are cases when "name/value pairs are advantageous.

Configuration Control of Networking API Service Definition

Configuration control provides mechanism for managing evolution and tracking changes. A
Networking API Service Definition will be defined at the functional level for a waveform or set
of waveforms. The developer of a waveform implementation will publish the Networking APIs
of its visible network components. Each Networking API Service Definition will be assigned a
UUID via the a mathematical formula that produces a unique number for each Networking API
service interface.

The control/publishing of the Networking API Service Definition could be accomplished in
many ways. The following are three example methods:

• Follow Microsoft COM/DCOM’s approach that does not require a configuration control
body. Basically this approach is survival of the fittest interface. Anyone can publish an
interface and overtime the bad ones will not be used.

• Keep the Networking API Service Definitions as part of the SCA and control it via a
configuration control body.

• Use a configuration control body where Networking API Service Definitions are publish
separate from the SCA; maybe a industry forum like the SDRF

The latter is better method foster inheritance, gain commercial acceptance and control the
propensity of growth. There should be a controlling body for UUIDs that controls the controls
publishing of UUIDs. This configuration control body should be an open standards body similar
to the SDRF, IETF, or the IEEE. This controlling body would assign a status for each
Networking API Service Definition similar to the way that the IETF assigns statuses to Internet
standards today. Potential statuses could include:

MSRC-5000SRD
Appendix D

D-3-37

• mandatory for a particular waveform or set of waveforms (i.e. if a vendor implements one of
the particular waveforms, then they must implement this Networking API Service Definition
to be JTRS compliant)

• recommended for a particular waveform or set of waveforms (i.e. if a vendor implements one
of the particular waveforms, then it is recommended, but not required, that they implement
this Networking API Service Definition to be JTRS compliant)

• allowable for a particular waveform or set of waveforms (i.e. the vendor is allowed, but not
required to implement this Networking API Service Definition to be JTRS for one of the
particular waveforms)

• Other possible statuses including experimental, not recommended, etc.
Any Networking API Service Definitions that are chosen as JTRS standards (i.e., mandatory or
recommended) must be published and non-proprietary. However, vendors can choose to keep the
details of particular Networking APIs private or proprietary (so that the status is likely to be
allowable or some other.) The owner of interface controls version numbering. This is similar to
the approach used to managing MIBs in SNMP and CMIP.

For example, suppose that there is a JTRS mandatory Networking API Service Definition for the
SINCGARS waveform. If a vendor develops a new proprietary way to mitigate co-site
interference that requires a new SINCGARS Networking API Service Definition, then that
vendor could get a UUID for its new Networking API Service Definition. The vendor would
have the freedom to keep the details of the new Networking API Service Definition proprietary
or to make it open. However, the new Networking API Service Definition could only become
mandatory or recommended if the vendor made the Networking API Service Definition open. In
either case, the vendor could now develop and sell a SINCGARS modem object that supports
both the mandatory Networking API Service Definition and this new allowable Networking API
Service Definition. Since there is a UUID, the Domain Manager can determine at instantiation
whether the SINCGARS modem object is being linked together with other objects that know
how to use the allowable SINCGARS service definition. If other such objects were available,
then a better co-site mitigation JTRS radio would result. If the other objects only knew how to
support the mandatory Networking API Service Definition, then an operational JTRS radio
would result that runs the SINCGARS waveform.

3.1.4.4 Operational Environment (OE)
This approach requires support within the OE resource profiles for UUIDs so that it can
determine which resources have compatible Networking API Service Definitions when
instantiating waveforms.

Waveform developers are free to define their Networking API Service Definitions using the OE
Message Interface or to develop a new CORBA interface that is not part of the OE. In either
case, since it is defined as part of the Networking API Service Definition, two objects that
implement the Networking API service defined by a given UUID will be interoperable.

3.1.4.5 Protocol Layer Applicability
This Networking API Service Definition alternative is applicable to any protocol layer due to
great flexibility.

MSRC-5000SRD
Appendix D

D-3-38

3.1.4.6 Networking API FOM Analysis

3.1.4.6.1 Waveform Portability
Does the Networking API Service Definition approach foster waveform portability?

Yes, by developing a small number of primitives and a framework based upon IDL for encoding
the service definition, the Networking API Service Definition can be moved to different
platforms.
Note: It is assumed that 'waveform portability' means porting a complete waveform (and no
hardware) from one JTRS platform to another, and not mixing and matching waveform
components.

3.1.4.6.1.1 Identify the porting steps required to take a waveform to another JTRS Platform and
evaluate the impact that the Networking API Service Definition approach has on that
process.

3.1.4.6.1.1.1 Porting Classification
The following table lists the projected porting steps for a wide range of porting stimulus.
Porting Stimulus Description Projected Porting Steps Required

Because of the Networking API
Service Definition

Environment Change:
Different Processor

Waveform must be ported to a different
processor

 No Networking API effect.

Environment Change:
Different OS

Waveform must be moved to a different OS No Networking API effect.

Environment Change:
Different Programming
Language

Waveform Objects must interact with
objects on the new platform that are written
in a different language

No Networking API effect.

Environment Change:
Different Platform
Hardware

Waveform is hosted on new platform
hardware that may require additional or
different control, e.g. modem, INFSOEC,
red I/O

No Networking API effect.

Environment Change:
Different Transport
Mechanism

Waveform is hosted on a new platform that
uses a different transport mechanism than
the source platform

Direct Rehost or Translation Shim
depending on the transport
mechanism.

The projected porting steps are defined from least to most effort in the following table.
Porting Step Description Effort Level
Direct Rehost Same processors, OSs etc. – No changes required None

Recompile Recompile of those portions of the waveform that are hosted on
a different processor

Minimal

Translation Shim Does the Networking API approach require that shims be added
to the waveform to port to the new platform?

Moderate

Edit/ReWrite Does the Networking API approach require such drastic code
changes that edit/rewrite is necessary?

Moderate-Extensive

MSRC-5000SRD
Appendix D

D-3-39

3.1.4.6.1.2 Does the Networking API Service Definition foster waveform portability for
software that already supports an existing interface, e.g. ARINC 732?

Yes, through Translation Shims for a new Networking API or Edit/Rewrite your software to
support the interface.
3.1.4.6.1.3 What is the impact of the Networking API Service Definition approach on the

current SCA definition?
1. Does the Networking API approach change the definition of any existing interfaces? No.
2. How many new interfaces are created by the Networking API approach? The number of new
interfaces can vary for each different Networking API Service Definition. Any new interfaces will
be defined outside the Core Framework and thus “bypass the core framework.” Since this
Networking API approach can use the Core Framework interfaces “as is” or defined new
interfaces “outside” the Core Framework, this Networking API approach does not impact the
Core Framework
3. What is the impact of the Networking API approach on the Core Framework? The Core
Framework will have to be able to track Networking API Service Definition GUIDs and version
numbers in resource profiles so that it can instantiate resources that can interoperate.

3.1.4.6.2 Able to support new networking and non-networking waveforms
Yes, by modifying already developed Networking API Service Definitions and changing the
version number of creating a new Networking API Service Definition and getting a new GUID.
3.1.4.6.2.1 Does the Networking API Service Definition approach allow incorporation of

extensions for new functionality?
Yes, by creating a new waveform definition or extension with its own globally unique ID that
describes which operations are used and what the name/value pairs are. Also, extensions are
easily supported through the Networking API inheritance. This assumes that the controlling
entity is longer Rooftop but has been transferred to some open standards body.
3.1.4.6.2.2 Does the Networking API Service Definition approach support future waveforms in

a consistent manner (e.g. reuse of the Networking API for multiple future
waveforms)?

Yes, through the use of the four primitives and inheritance.
3.1.4.6.2.3 Does the Networking API Service Definition approach support creation of

Networking APIs that can be used by networking and non-networking waveforms?
Yes, by creating a new waveform definition or extension with its own globally unique ID that
describes which primitives are used and what the name/value pair variables are.
3.1.4.6.2.4 Is there a projected waveform that cannot be supported by the Networking API

Service Definition approach?
None known. It is assumed that the approach can be extend and add new commands and
variables and does not include unneeded commands and variables. The API has been examined
for a wide variety of networking waveforms under the GloMo and other programs, including
Aspen, Sparrow, Wideband Network Radio, etc.

MSRC-5000SRD
Appendix D

D-3-40

3.1.4.6.3 Able to support legacy networking and non-networking waveforms
Yes, by modifying already developed Networking API Service Definitions and changing the
version number of creating a new Networking API Service Definition and getting a new GUID.
3.1.4.6.3.1 Does the Networking API Service Definition approach support low-overhead,

efficient transfer of control and traffic across the Networking API?
This service definition approach has more overhead for sending control (due to the parsing of
the name/value pairs) that are passed above IDL than an approach that passes parameters is
specific IDL without any name/value pairs.
3.1.4.6.3.2 Does the Networking API Service Definition approach allow incorporation of

extensions for new functionality?
Yes, by creating a new waveform definition or extension with its own globally unique ID that
describes which operations are used and what the name/value pairs are. Also, extensions are
easily supported through the Networking API inheritance. This assumes that the controlling
entity is longer Rooftop but has been transferred to some open standards body.
3.1.4.6.3.3 Does the Networking API Service Definition support legacy networking waveforms

in a consistent manner (e.g. reuse of the Networking API for multiple legacy
waveforms)?

The Networking API provides a consistent set of primitives plus inheritance upon which to
standardize the Networking API definitions for a particular waveform. Thus, it encourages
consistency.
3.1.4.6.3.4 Does the Networking API Service Definition support creation of Networking APIs

that can be used by networking and non-networking waveforms?
Yes, by creating a new waveform definition or extension with its own globally unique ID that
describes which primitives are used and what the name/value pair variables are.

3.1.4.6.3.5 Is there a known waveform that cannot be supported by the Networking API Service
Definition approach?

None known. It is assumed that the approach can be extend and add new commands and
variables and does not include unneeded commands and variables. The API has been examined
for a wide variety of networking waveforms under the GloMo and other programs, including
Aspen, Sparrow, Wideband Network Radio, etc.

3.1.4.6.4 Performance (Efficiency/Latency)
3.1.4.6.4.1 Does the Networking API Service Definition approach support low-overhead,

efficient transfer of control and traffic across the Networking API?
This service definition approach has more overhead for sending control (due to the parsing of
the name/value pairs) that are passed above IDL than an approach that passes parameters is
specific IDL without any name/value pairs.
3.1.4.6.4.2 Does the Networking API Service Definition approach support high data throughput,

low latency control?
This service definition approach has more overhead for sending control (due to the parsing of
the name/value pairs) that are passed above IDL than an approach that passes parameters is
specific IDL without any name/value pairs.

MSRC-5000SRD
Appendix D

D-3-41

3.1.4.6.4.3 How is performance affected by any required message parsing within the producer
and consumer resources?

Performance would be less efficient using name/value pairs as compared to a “pure IDL”
approach.

3.1.4.6.5 Extensibility
3.1.4.6.5.1 Does the Networking API Service Definition approach allow Networking API

definition to be extended to support new waveform interfaces, functionality,
representation, and mechanisms?

Yes, by creating a new waveform definition or extension with its own globally unique ID that
describes which primitives are used and what the name/value pair variables are.
3.1.4.6.5.2 Does a mechanism(s) exist to limit proliferation of published Networking API

extensions?
This Networking API approach per se does not have any mechanisms to limit proliferation of
published Networking API extensions, although the use of inheritance should help the extensions
stay somewhat similar.
However, this approach assumes that there is a standard configuration control body that
determines which published Networking API extensions are the “standard” Networking API for
a given waveform. In that sense it is very similar to SNMP which will allow a plethora of MIB
definitions, but has the IETF define which MIBs are the standard MIBs that all routers/hosts
must/should support.

3.1.4.6.6 Networking API Reuse at same layer
3.1.4.6.6.1 Does the Networking API Service Definition approach foster Networking API reuse

at the same layer, e.g. use the same modem Networking API definition for multiple
(different) waveforms?

Yes, somewhat through the use of inheritance. Also the standard configuration control body
could foster such reuse.
3.1.4.6.6.2 Does the Networking API Service Definition approach foster commonality of

interface?
1. Common Operation Set? Yes.
2. Common Parameter Set? Somewhat through the use of inheritance (although the standard
configuration control body could foster such commonality).
3. Common Message/Data Format? Yes, through inheritance.

3.1.4.6.7 Component Interoperability (within the box, component plug and play)
3.1.4.6.7.1 Does the Networking API Service Definition approach foster development of

Networking APIs that allow individual waveform components to be reused by other
waveforms?

Yes, through the use of inheritance although it has problems because it does not define behavior.
3.1.4.6.7.2 Do the Networking API definition, implementation, and configuration control

methods support component interoperability?

MSRC-5000SRD
Appendix D

D-3-42

1. Does the Networking API approach support interface negotiation (e.g. Global User ID)? Yes.
2. Does the Networking API approach support interface version query? Yes.
3. Does the Networking API approach support backward interface compatibility? Yes, through
GUID & version interface query and fallback although it has problems because it does not
define behavior.

3.1.4.6.8 Cost
3.1.4.6.8.1 Is the Networking API Service Definition a cost driver?
1. Implementation Cost? Moderately higher than “pure IDL” due to second layer of name/value
pair representations in the var groups, but much less than allowing GUID only and any
functional & representation definition as long as it is documented and identified by the GUID.
(Should be similar to that required to implement SNMP & SNMP MIBs. The cost could
significantly drop with the introduction of name/value pair compilers and development tools
similar to those used by SNMP.)
2. Maintenance Cost? Moderately higher than “pure IDL” due to second layer of name/value
pair representations in the var groups, but much less than allowing GUID only and any
functional & representation definition as long as it is documented and identified by the GUID.
(Should be similar to that required to maintain SNMP & SNMP MIBs. The cost could
significantly drop with the introduction of name/value pair compilers and development tools
similar to those used by SNMP.)
3. Porting Cost? If talking with applications that already understand/support Networking API,
then it should be the same to slightly higher than “pure IDL” due to second layer of name/value
pair representations in the var groups. (Similar to how inexpensive it is to port SNMP
applications & agents.)

3.1.4.6.9 Commercial Acceptance
3.1.4.6.9.1 Does the Networking API Service Definition approach have current or projected

commercial acceptance, (e.g. SDRF, IEEE, OMG, or de facto)? (No, some, or
widespread commercial acceptance?)

Many wireless standards are being developed due to the rapid explosion in commercial wireless
products. Although we do not know which of these commercial initiatives will achieve
commercial de facto standard acceptance similar to the Hayes modem AT command set, several
such interface de facto standards are bound to arise. The one that wins is probably going to be
based around getting initial market penetration in both the commercial cellular data market, the
wireless LAN market, and the consumer home/personal network market. Since this Networking
API is being defined for JTRS which is focused on military applications, it is likely that neither
this Networking API (nor any Networking APIs) will achieve widespread commercial
acceptance. Although it is not likely that any JTRS Networking API will achieve some
commercial acceptance (assuming there are no technical problems with the Networking API).
Since the JTRS addresses a large, important military market (although small in comparison to
the commercial market); any JTRS Networking API that does not have technical problems is
likely to be accepted by the SDRF and/or the IEEE.
Since, this Networking API approach allows the reuse of existing commercial interfaces for
particular waveforms; it can get some commercial acceptance just by tracking with existing

MSRC-5000SRD
Appendix D

D-3-43

commercial acceptances. Note that the high flexibility of this approach is likely to be a major
issue for a significant minority of engineers.
Thus, the combination of the exploding commercial wireless market coupled with the fact that
this Networking API approach has not technical negatives means that this approach, if selected
as the JTRS Networking API, would likely achieve some commercial acceptance and become a
SDRF and/or IEEE standard.
3.1.4.6.9.2 Does the Networking API Service Definition foster the adoption of Networking APIs

with current or projected commercial acceptance, (e.g. DLPI, Sockets, de facto
(Microsoft))? (No, some, or widespread commercial acceptance?)

It is possible, but not as likely as the Commercial Model (with or without inheritance) This
approach will not allow the incorporation of other standards such as DLPP.

3.1.4.6.10 Security
This section requires further work and coordination with the Security IPT.

3.1.4.6.10.1 Do the JTRS security requirements prevent the use of this Networking API definition
or implementation?

1. Use of IDL Networking API definition if red and black objects can only communicate through
INFOSEC adapters? This is a question if all messages flowing from red to black must pass
through the generic message interface of an INFOSEC adapter. How can IDL interface
definitions be used between red and black objects?
 2.

A complete answer will await meeting with the Security IPT.

3.1.4.6.11 Ability to Adapt to Commercial Trends
3.1.4.6.11.1 Is the Networking API Service Definition approach able to adapt to emerging

commercial networking standards?
Yes, it is able to adapt to emerging standards through it extensibility, although not as well as
alternatives #3 and #4, since this alternative is already frozen into having to use its primitives.

MSRC-5000SRD
Appendix D

D-3-44

3.1.5 Option 4 - GloMo Rooftop API based Networking API Service Definition
Interface Type: Networking API Service Definition

Name: Option 5 – GloMo Rooftop API based Networking API Service Definition

Date: 21 March 2000

Revision: 3.0

Author: Jim Stevens (jasteven@collins.rockwell.com)

Company: Rockwell Collins

3.1.5.1 Description
This Networking API Service Definition approach is based upon the GloMo Rooftop API
framework except that the primitives are specified in IDL. This is the Networking API that the
MSRC proposed during JTRS Phase 1. Since this service definition includes inheritance, it can
be considered a special instance of Alternative Option 4 Networking API Service Definition.

3.1.5.2 Diagram
The following diagram shows the four primitives derived from the GloMo Rooftop API.

“Upper Object” “Lower Object”

Commands

Signals

Variables
set/get/inc/clr

Responses

The following diagram shows an example of the Networking API inheritance.

MSRC-5000SRD
Appendix D

D-3-45

Core
NAPI

Core
Packet NAPI

Modem
NAPI

Time-
Synchronized
Modem NAPI

Link
NAPI

Network
NAPI

3.1.5.3 Theory of Operation
This Networking API is based upon the GloMo Rooftop API. For more information on the
current GloMo APIs, refer to the GloMo API Framework and Definition documents available at
http://www.rooftop.com/technologyFRAME.html.

Each Networking API defined under this approach consists of the following components:

“Primitives”—used to define the basic information flow across the Networking API,

“Qualifiers”—flags and other action specifiers applicable to any of the primitives, and

“Return Codes”—status codes returned from certain primitive operations.

The four basic types of Networking API primitives are described below and illustrated in the first
diagram in section 2.

Commands Commands are asynchronous upper-to-lower object primitives for
performing immediate, typically non-persistent actions. Commands
often result in an immediate Response followed later by one or more
Signals from the lower object.

Variables Control characteristics and measurement status information of the
lower object are communicated using Variable primitives. Variables
support one or more of the set, get, increment, or clear synchronous
access operations. Also, “variable groups” allow for the upper object
to access a group of variables with one operation. Note that variables
are defined as name/value pairs.

MSRC-5000SRD
Appendix D

D-3-46

Responses Responses report the synchronous lower-object result to an upper
object’s command or variable operation. For Commands, the
Response often indicates whether or not the Command has been
received correctly and can be acted upon, with one or more Signals
reporting the result of the action later.

Signals Signals are asynchronous lower-to-upper object primitives for
reporting recent, typically non-persistent events. The lower object
should support the selective enabling and disabling of each of its
supported signals through the Networking API.

Each primitive can be qualified to give more specific instructions such as specifying which
“radio transceiver” or specifying to which section (e.g., xmt or rcv) the operation should be
applied. A special “info” qualifier is used with variable operations to allow the upper object to
learn the capabilities (e.g., read/write support, range of valid values, default value) of the lower
object with regards to a particular variable. Each Networking API defines a set of return codes
to provide a standard means for the lower object to indicate the success or failure status in each
Response to Command and Variable operations, and in each asynchronous Signal delivered to
the upper object.

The Networking API Framework also defines a basic set of “Core” primitives that are applicable
to all Networking APIs defined within this framework. This set with additional “Core Packet”
primitives applicable to all packet-based Networking APIs (such as the Modem, Link, and
Network Networking APIs). These sets are inheritable to develop additional Networking APIs
such as the Modem, Link, and Network Networking APIs that are unique for each waveform
implemented in JTRS.

The Networking APIs and inherited Networking APIs will be identified by GUIDs. There will
be a controlling body for GUIDs that controls the control assignment of GUIDs. This controlling
will assign a status for each Networking API instantiation. Potential statuses could include:

mandatory (i.e. if implementing a particular waveform, then must implement at least this
interface)

recommended (i.e. if implementing a particular waveform, then recommend that implement this
interface)

allowable (i.e. if implementing a particular waveform, then it is okay to implement this interface)

Other possible statuses including experimental, not recommended, etc. recommended

Any Networking APIs that are chosen as JTRS standard interfaces (that is mandatory or
recommended) will be published and non-proprietary. However, vendors can choose to keep the
details of particular Networking APIs private or proprietary (so that the status is likely to be
allowable or some other.) The owner of interface controls version numbering. This is similar to
the approach used to managing MIBs in SNMP and CMIP.

All visible interfaces will be uniquely identified. A mechanism will be provided within the
Domain/Resource Manager to identify the interfaces used by the resources. When the
Domain/Resource Manager instantiates a Resource to satisfy a User request it selects the
resource with matching interface.

MSRC-5000SRD
Appendix D

D-3-47

3.1.5.4 Operational Environment (OE)
This approach requires support within the OE to help negotiate interfaces during resource
instantiation.

The openness of this approach means that some Networking API mechanisms may be chosen
that lie outside the approach used by the OE (i.e. do not use the message interface).

3.1.5.5 Protocol Layer Applicability
The GloMo API has already been applied to the Modem, Link, and Network protocol layers and
should be extensible to other layers (such as Transport) as needed.

3.1.5.6 Networking API FOM Analysis

3.1.5.6.1 Waveform Portability
Does the Networking API Service Definition approach foster waveform portability?

Yes, by developing a small number of primitives and a framework based upon IDL for encoding
the service definition, the Networking API Service Definition can be moved to different
platforms.
Note: It is assumed that 'waveform portability' means porting a complete waveform (and no
hardware) from one JTRS platform to another, and not mixing and matching waveform
components.

3.1.5.6.1.1 Identify the porting steps required to take a waveform to another JTRS Platform and
evaluate the impact that the Networking API Service Definition approach has on that
process.

3.1.5.6.1.1.1 Porting Classification
The following table lists the projected porting steps for a wide range of porting stimulus.

Porting Stimulus Description Projected Porting Steps Required
Because of the Networking API
Service Definition

Environment Change:
Different Processor

Waveform must be ported to a different
processor

 No Networking API effect.

Environment Change:
Different OS

Waveform must be moved to a different OS No Networking API effect.

Environment Change:
Different Programming
Language

Waveform Objects must interact with objects on
the new platform that are written in a different
language

No Networking API effect.

Environment Change:
Different Platform
Hardware

Waveform is hosted on new platform hardware
that may require additional or different control,
e.g. modem, INFSOEC, red I/O

No Networking API effect.

Environment Change:
Different Transport
Mechanism

Waveform is hosted on a new platform that uses
a different transport mechanism than the source
platform

Direct Rehost or Translation Shim
depending on the transport
mechanism.

The projected porting steps are defined from least to most effort in the following table.

MSRC-5000SRD
Appendix D

D-3-48

Porting Step Description Effort Level
Direct Rehost Same processors, OSs etc. – No changes required None

Recompile Recompile of those portions of the waveform that are hosted on
a different processor

Minimal

Translation Shim Does the Networking API approach require that shims be added
to the waveform to port to the new platform?

Moderate

Edit/ReWrite Does the Networking API approach require such drastic code
changes that edit/rewrite is necessary?

Moderate-Extensive

3.1.5.6.1.2 Does the Networking API Service Definition foster waveform portability for
software that already supports an existing interface, e.g. ARINC 732?

Yes, through Translation Shims for a new Networking API or Edit/Rewrite your software to
support the interface.
3.1.5.6.1.3 What is the impact of the Networking API Service Definition approach on the

current SCA definition?
1. Does the Networking API approach change the definition of any existing interfaces?

No.
2. How many new interfaces are created by the Networking API approach?

The number of new interfaces can vary for each different Networking API Service Definition.
Any new interfaces will be defined outside the Core Framework and thus “bypass the core
framework.” Since this Networking API approach can use the Core Framework interfaces “as
is” or defined new interfaces “outside” the Core Framework, this Networking API approach
does not impact the Core Framework.
3. What is the impact of the Networking API approach on the Core Framework?

The Core Framework will have to be able to track Networking API Service Definition GUIDs
and version numbers in resource profiles so that it can instantiate resources that can
interoperate.

3.1.5.6.2 Able to support new networking and non-networking waveforms
Yes, by modifying already developed Networking API Service Definitions and changing the
version number of creating a new Networking API Service Definition and getting a new GUID.
3.1.5.6.2.1 Does the Networking API Service Definition approach allow incorporation of

extensions for new functionality?
Yes, by creating a new waveform definition or extension with its own globally unique ID that
describes which operations are used and what the name/value pairs are. Also, extensions are
easily supported through the Networking API inheritance. This assumes that the controlling
entity is longer Rooftop but has been transferred to some open standards body.
3.1.5.6.2.2 Does the Networking API Service Definition approach support future waveforms in

a consistent manner (e.g. reuse of the Networking API for multiple future
waveforms)?

Yes, through the use of the four primitives and inheritance.

MSRC-5000SRD
Appendix D

D-3-49

3.1.5.6.2.3 Does the Networking API Service Definition approach support creation of
Networking APIs that can be used by networking and non-networking waveforms?

Yes, by creating a new waveform definition or extension with its own globally unique ID that
describes which primitives are used and what the name/value pair variables are.
3.1.5.6.2.4 Is there a projected waveform that cannot be supported by the Networking API

Service Definition approach?
None known. It is assumed that the approach can be extend and add new commands and
variables and does not include unneeded commands and variables. The API has been examined
for a wide variety of networking waveforms under the GloMo and other programs, including
Aspen, Sparrow, Wideband Network Radio, etc.

3.1.5.6.3 Able to support legacy networking and non-networking waveforms
Yes, by modifying already developed Networking API Service Definitions and changing the
version number of creating a new Networking API Service Definition and getting a new GUID.
3.1.5.6.3.1 Does the Networking API Service Definition approach support low-overhead,

efficient transfer of control and traffic across the Networking API?
This service definition approach has more overhead for sending control (due to the parsing of
the name/value pairs) that are passed above IDL than an approach that passes parameters is
specific IDL without any name/value pairs.
3.1.5.6.3.2 Does the Networking API Service Definition approach allow incorporation of

extensions for new functionality?
Yes, by creating a new waveform definition or extension with its own globally unique ID that
describes which operations are used and what the name/value pairs are. Also, extensions are
easily supported through the Networking API inheritance. This assumes that the controlling
entity is longer Rooftop but has been transferred to some open standards body.
3.1.5.6.3.3 Does the Networking API Service Definition support legacy networking waveforms

in a consistent manner (e.g. reuse of the Networking API for multiple legacy
waveforms)?

The Networking API provides a consistent set of primitives plus inheritance upon which to
standardize the Networking API definitions for a particular waveform. Thus, it encourages
consistency.
3.1.5.6.3.4 Does the Networking API Service Definition support creation of Networking APIs

that can be used by networking and non-networking waveforms?
Yes, by creating a new waveform definition or extension with its own globally unique ID that
describes which primitives are used and what the name/value pair variables are.
3.1.5.6.3.5 Is there a known waveform that cannot be supported by the Networking API Service

Definition approach?
None known. It is assumed that the approach can be extend and add new commands and
variables and does not include unneeded commands and variables. The API has been examined
for a wide variety of networking waveforms under the GloMo and other programs, including
Aspen, Sparrow, Wideband Network Radio, etc.

MSRC-5000SRD
Appendix D

D-3-50

3.1.5.6.4 Performance (Efficiency/Latency)
3.1.5.6.4.1 Does the Networking API Service Definition approach support low-overhead,

efficient transfer of control and traffic across the Networking API?
This service definition approach has more overhead for sending control (due to the parsing of
the name/value pairs) that are passed above IDL than an approach that passes parameters is
specific IDL without any name/value pairs.
3.1.5.6.4.2 Does the Networking API Service Definition approach support high data throughput,

low latency control?
This service definition approach has more overhead for sending control (due to the parsing of
the name/value pairs) that are passed above IDL than an approach that passes parameters is
specific IDL without any name/value pairs.
3.1.5.6.4.3 How is performance affected by any required message parsing within the producer

and consumer resources?
Performance would be less efficient using name/value pairs as compared to a “pure IDL”
approach.

3.1.5.6.5 Extensibility
3.1.5.6.5.1 Does the Networking API Service Definition approach allow Networking API

definition to be extended to support new waveform interfaces, functionality,
representation, and mechanisms?

Yes, by creating a new waveform definition or extension with its own globally unique ID that
describes which primitives are used and what the name/value pair variables are.
3.1.5.6.5.2 Does a mechanism(s) exist to limit proliferation of published Networking API

extensions?
This Networking API approach per se does not have any mechanisms to limit proliferation of
published Networking API extensions, although the use of inheritance should help the extensions
stay somewhat similar.
However, this approach assumes that there is a standard configuration control body that
determines which published Networking API extensions are the “standard” Networking API for
a given waveform. In that sense it is very similar to SNMP which will allow a plethora of MIB
definitions, but has the IETF define which MIBs are the standard MIBs that all routers/hosts
must/should support.

3.1.5.6.6 Networking API Reuse at same layer
3.1.5.6.6.1 Does the Networking API Service Definition approach foster Networking API reuse

at the same layer, e.g. use the same modem Networking API definition for multiple
(different) waveforms?

Yes, somewhat through the use of inheritance. Also the standard configuration control body
could foster such reuse.
3.1.5.6.6.2 Does the Networking API Service Definition approach foster commonality of

interface?
1. Common Operation Set? Yes.

MSRC-5000SRD
Appendix D

D-3-51

2. Common Parameter Set? Somewhat through the use of inheritance (although the standard
configuration control body could foster such commonality).
3. Common Message/Data Format? Yes, through inheritance.

3.1.5.6.7 Component Interoperability (within the box, component plug and play)
3.1.5.6.7.1 Does the Networking API Service Definition approach foster development of

Networking APIs that allow individual waveform components to be reused by other
waveforms?

Yes, through the use of inheritance although it has problems because it does not define behavior.
3.1.5.6.7.2 Do the Networking API definition, implementation, and configuration control

methods support component interoperability?
1. Does the Networking API approach support interface negotiation (e.g. Global User ID)? Yes.
2. Does the Networking API approach support interface version query? Yes.
3. Does the Networking API approach support backward interface compatibility? Yes, through
GUID & version interface query and fallback although it has problems because it does not
define behavior.

3.1.5.6.8 Cost
3.1.5.6.8.1 Is the Networking API Service Definition a cost driver?
1. Implementation Cost?

Moderately higher than “pure IDL” due to second layer of name/value pair representations in
the var groups, but much less than allowing GUID only and any functional & representation
definition as long as it is documented and identified by the GUID. (Should be similar to that
required to implement SNMP & SNMP MIBs. The cost could significantly drop with the
introduction of name/value pair compilers and development tools similar to those used by
SNMP.)
2. Maintenance Cost?

Moderately higher than “pure IDL” due to second layer of name/value pair representations in
the var groups, but much less than allowing GUID only and any functional & representation
definition as long as it is documented and identified by the GUID. (Should be similar to that
required to maintain SNMP & SNMP MIBs. The cost could significantly drop with the
introduction of name/value pair compilers and development tools similar to those used by
SNMP.)
3. Porting Cost?

If talking with applications that already understand/support Networking API, then it should be
the same to slightly higher than “pure IDL” due to second layer of name/value pair
representations in the var groups. (Similar to how inexpensive it is to port SNMP applications &
agents.)

MSRC-5000SRD
Appendix D

D-3-52

3.1.5.6.9 Commercial Acceptance
3.1.5.6.9.1 Does the Networking API Service Definition approach have current or projected

commercial acceptance, (e.g. SDRF, IEEE, OMG, or de facto)? (No, some, or
widespread commercial acceptance?)

Many wireless standards are being developed due to the rapid explosion in commercial wireless
products. Although we do not know which of these commercial initiatives will achieve
commercial de facto standard acceptance similar to the Hayes modem AT command set, several
such interface de facto standards are bound to arise. The one that wins is probably going to be
based around getting initial market penetration in both the commercial cellular data market, the
wireless LAN market, and the consumer home/personal network market. Since this Networking
API is being defined for JTRS which is focused on military applications, it is likely that neither
this Networking API (nor any Networking APIs) will achieve widespread commercial
acceptance. Although it is not likely that any JTRS Networking API will achieve some
commercial acceptance (assuming there are no technical problems with the Networking API).
Since the JTRS addresses a large, important military market (although small in comparison to
the commercial market); any JTRS Networking API that does not have technical problems is
likely to be accepted by the SDRF and/or the IEEE.
Since, this Networking API approach allows the reuse of existing commercial interfaces for
particular waveforms; it can get some commercial acceptance just by tracking with existing
commercial acceptances. Note that the high flexibility of this approach is likely to be a major
issue for a significant minority of engineers.
Thus, the combination of the exploding commercial wireless market coupled with the fact that
this Networking API approach has not technical negatives means that this approach, if selected
as the JTRS Networking API, would likely achieve some commercial acceptance and become a
SDRF and/or IEEE standard.
3.1.5.6.9.2 Does the Networking API Service Definition foster the adoption of Networking APIs

with current or projected commercial acceptance, (e.g. DLPI, Sockets, de facto
(Microsoft))? (No, some, or widespread commercial acceptance?)

It is possible, but not as likely as the Commercial Model (with or without inheritance) This
approach will not allow the incorporation of other standards such as DLPP.

3.1.5.6.10 Security
(This section requires further work and coordination with the Security IPT.)

3.1.5.6.10.1 Do the JTRS security requirements prevent the use of this Networking API definition
or implementation?

1. Use of IDL Networking API definition if red and black objects can only communicate
through INFOSEC adapters?

This is a question if all messages flowing from red to black must pass through the generic
message interface of an INFOSEC adapter. How can IDL interface definitions be used between
red and black objects?
 2.

A complete answer will await meeting with the Security IPT.

MSRC-5000SRD
Appendix D

D-3-53

3.1.5.6.11 Ability to Adapt to Commercial Trends
3.1.5.6.11.1 Is the Networking API Service Definition approach able to adapt to emerging

commercial networking standards?
Yes, it is able to adapt to emerging standards through it extensibility, although not as well as
alternatives #3 and #4, since this alternative is already frozen into having to use its primitives.

MSRC-5000SRD
Appendix D

D-3-54

3.2 NETWORKING API TRANSFER MECHANISM OPTIONS

3.2.1 Option 1 - CORBA, CORBA, CORBA, CORBA
Interface Type: Transfer Mechanism

Name: CORBA, CORBA, CORBA, CORBA

Date: 20 MAR 00

Revision: 5.0

Author: Fred Mangarelli

Company: Raytheon

3.2.1.1 Description
This alternative uses CORBA for non-real-time setup of waveform and non-real-time setting of
operation parameters, Waveform Control across Red-to-Black Boundary, real-time control, and
Waveform Data Flow across the Red-to-Black Boundary.

3.2.1.2 Diagram

ORB
TCP
IP

cPCI
cPCI

4
3
2
1

ORB
TCP
IP

cPCI
cPCI

4
3
2
1

ORB ORB
TCP TCP

IP IP
cPCI cPCI
cPCI cPCI

4
3
2
1

Black Processor Infosec Red Processor

188-220
Object

Ethernet
Object

EPLRS
X.25 ADDSI

Object

803.2
100BaseT

External
Ethernet

IP
Object

Control
Object

Routing
Object

External Stack
Layer 7 Layer 3/4 Layer 2

Security
Object

Black Link
Objects

Modem
Objects

Modem
Modem

Modem

TCP
Object

MSRC-5000SRD
Appendix D

D-3-55

Data flow – Host packet on ethernet interface to be routed out of the SINCGARS (188-220)
interface:

The packet is received on the ethernet interface and passed to the ethernet object. The
ethernet object uses CORBA to pass the packet to the IP object, which uses CORBA to
pass the packet to the 188-220 object. The 188-220 object passes the packet to the
INFOSEC object and on to the black link object in the black processor. The black link
passes the packet to the modem object where it is sent to the modem for RF output.

ORB
TCP
IP

cPCI
cPCI

4
3
2
1

ORB
TCP
IP

cPCI
cPCI

4
3
2
1

ORB ORB
TCP TCP

IP IP
cPCI cPCI
cPCI cPCI

4
3
2
1

Black Processor Infosec Red Processor

188-220
Object

Ethernet
Object

EPLRS
X.25 ADDSI

Object

803.2
100BaseT

External
Ethernet

IP
Object

Control
Object

Routing
Object

External Stack
Layer 7 Layer 3/4 Layer 2

Security
Object

Black Link
Objects

Modem
Objects

Modem
Modem

Modem

TCP
Object

MSRC-5000SRD
Appendix D

D-3-56

Data flow – Packet received on EPLRS interface to be routed out of the SINCGARS (188-220)
interface:

The packet is received by the EPLRS modem and sent to the modem objects which uses
CORBA to pass the packet to the black link object. The black link object passes the
packet to the security object and then to the EPLRS X.25 ADDSI object. The EPLRS
X.25 ADDSI object uses CORBA to pass the packet to the IP object, which uses CORBA
to pass the packet to the 188-220 object. The 188-220 object passes the packet to the
infosec object and on to the black link object in the black processor. The black link
passes the packet to the modem object where it is sent to the modem for RF output.

ORB
TCP
IP

cPCI
cPCI

4
3
2
1

ORB
TCP
IP

cPCI
cPCI

4
3
2
1

ORB ORB
TCP TCP

IP IP
cPCI cPCI
cPCI cPCI

4
3
2
1

Black Processor Infosec Red Processor

188-220
Object

Ethernet
Object

EPLRS
X.25 ADDSI

Object

803.2
100BaseT

External
Ethernet

IP
Object

Control
Object

Routing
Object

External Stack
Layer 7 Layer 3/4 Layer 2

Security
Object

Black Link
Objects

Modem
Objects

Modem
Modem

Modem

TCP
Object

MSRC-5000SRD
Appendix D

D-3-57

3.2.1.3 Theory of Operation
• Supports use of COTS networking software such as Internet Protocol and associated routing

and control protocols, TCP, UDP, SNMP, Web Servers, etc.

• Supports use of legacy tactical networking software such as MIL-STD-188-220, NTDR.

• Adapts COTS and legacy software into the JTRS Operating Environment through
architecture compliant adapter objects.

• Uses architecture compliant adapter objects to support non-CORBA capable hardware such
as INFOSEC cryptographic engine, modem and audio I/O.

• Uses CORBA transport for inter-object communications and object control by the JTRS Core
Framework.

• All waveform dependent objects are at the Applications Layer for maximum waveform
portability.

• Protocol stacks provide communications support for CORBA ORBs provided by TCP/IP.

• Separate internal and external stacks to isolate internal radio IP address space from external
IP address space.

• This is an SCA compliant, highly portable application design.

3.2.1.4 OE
This approach uses the transport services provided by the OE for transport of information
between CORBA Objects. An additional “external stack” is provided where each protocol layer
is implemented as a CORBA object.

3.2.1.5 Layer Applicability
Modem, Link, Network (3A, 3B), Transport

3.2.1.6 FOM Analysis

3.2.1.6.1 Waveform Portability
Waveform portability is achieved with CORBA by developing each layer of the waveform
protocol stack as a CORBA object. IDL is used to define the interface between stack layers.
Applications communicate with one another regardless of the environment in which the
application resides.

3.2.1.6.1.1 Porting Activity Identification
This section identifies the porting steps required for a given transfer mechanism alternative to be
ported given certain stimuli.

3.2.1.6.1.1.1 Porting Stimuli Definitions

MSRC-5000SRD
Appendix D

D-3-58

Stimulus Description Classification
Environment Change:Different Processor Waveform must be ported to a different processor Non-recurring
Environment Change:Different OS Waveform must be moved to a different OS Non-recurring
Environment Change:Different Bus Waveform must be moved to a different bus

structure
Non-recurring

Protocol Standard Migration:COTS Stack Waveform requires new capabilities as reflected in
new protocol standards (e.g. implementation of IP
RFCs). The networking implementation uses COTS
stack components.

Non-recurring

Protocol Standard Migration:Custom
Stack

Waveform requires new capabilities as reflected in
new protocol standards (e.g. implementation of IP
RFCs). The networking implementation uses
custom stack components.

Non-recurring

New Transport Protocol: COTS Stack A new transport protocol must be added (e.g . to
support reliable multicast). The networking
implementation uses COTS stack components.

Non-recurring

New Transport Protocol: Custom Stack A new transport protocol must be added (e.g . to
support reliable multicast). The networking
implementation uses custom stack components

Non-recurring

3.2.1.6.1.1.2 Porting Step Definitions

Porting Step Description Effort Level
Recompilation Recompilation of networking part of waveform. Minimal
Thin Layer Port Port of OS/Kernel isolation layer Moderate
Bus Layer Port Port of bus communication layer Moderate
Mechanism Port Port of networking functionality to the chosen implementation

mechanism (i.e. CORBA, STREAMS. Etc)
Extensive

Application Port Implementation in a particular environment requires porting of one
or more applications. For example a custom socket implementation
may invalidate the use of select() in applications.

Minimal-Extensive

Capability Extension Requires the extension of existing software to add new capabilities Moderate-Extensive
OS Rebuild Requires rebuilding the OS. Minimal

3.2.1.6.1.1.3 Porting Steps Required for a Given Stimulus

Environment Change (non-recurring) Protocol Standard Migration
(non-recurring)

New Transport Protocol (non-
recurring)

Different
Processor

Different
OS

Different
Bus

COTS Stack Custom Stack COTS Stack Custom Stack

Recompilati
on

Recompila
tion

No impact Thin Layer Port Capability
Extension

Recompile or
Capability
Extension

Recompile or
Capability
Extension

3.2.1.6.1.2 Impacts to CF caused by using the transfer mechanism.
There are no impacts to the CF.

MSRC-5000SRD
Appendix D

D-3-59

3.2.1.6.2 Ability to support legacy networking
3.2.1.6.2.1 Ability to support legacy and future waveforms
Adapters/wrappers are used to adapt non-CORBA capable legacy code to CORBA transport.
Since CORBA is used as the transport between all protocol layers, overhead and performance is
a factor in support of high-throughput/low-latency legacy and future waveforms.
3.2.1.6.2.2 Show how transport will support existing networking waveforms.
CORBA is able to support legacy networking waveforms such as SINCGARS SIP and EPLRS.
For SINCGARS SIP, the IP network layer (3b) (shared by all network waveforms), the 188-220
intranet layer(3a), the link layer (2), the INFOSEC interface, the black link layer and the modem
driver would each be implemented as CORBA objects. In the case of EPLRS the IP network
layer, the X.25 ADDSI red link layer, the INFOSEC interface, the black side link layer and the
modem driver would be implemented as CORBA objects. The interfaces between each of these
objects would be represented in IDL.
Since CORBA is used as the transport between all protocol layers, overhead and performance is
a factor in support of high-throughput/low-latency legacy and future waveforms.
3.2.1.6.2.3 Show how transport will support existing non-networking waveforms.
Use adapters/wrappers for non-CORBA capable hardware drivers (e.g. audio and modem
adapters).
3.2.1.6.2.4 Show how transport will support future networking waveforms.
For future networking waveforms, the protocol layers are implemented as CORBA objects.
Since CORBA is used as the transport between all protocol layers, overhead and performance is
a factor in support of high-throughput/low-latency future waveforms.
3.2.1.6.2.5 Show how transport will support future non-networking waveforms.
For future non-networking waveforms, the waveforms would be implemented as CORBA objects.
Since CORBA is used as the transport, overhead and performance is a factor in support of high-
throughput/low-latency future non-networking waveforms.

3.2.1.6.3 Performance
Performance is the ability of the transport mechanism to support the message data rate, timing
and latency requirements of the modem hardware. It is difficult to quantify performance when
the characteristics of the modem hardware, the processor, the operating system and the CORBA
implementation are not known.
Modem hardware: There is a tradeoff between hardware cost and complexity and real time

software performance. The modem hardware to a certain extent, can be
designed to compensate for software latency by providing buffering of
commands and data. For example, a modem with a time slot architecture,
such as JTIDS, can be designed with buffering for multiple time slots.
This would allow the protocol software to set up time slot parameters in
advance, making the software control less time critical.

Processor: Processor speed plays an important role in real time performance. The
processing burdens of using CORBA as a transport mechanism can be

MSRC-5000SRD
Appendix D

D-3-60

offset to a certain extent by a fast processor. If too much reliance is
placed on processing speed, there is a risk that the protocol stack will
perform on all versions of the JTRS hardware. The portability aspects of
CORBA become limited if the software can only run on certain processors.

Operating System: Operating systems also play an important role in the performance of real
time systems. Every aspect of the operating system, from scheduling to
interrupt processing can have an impact on the real time performance of a
system. Some modems may require their protocol software to run in a real
time operating system, such as VxWorks or pSOS in order to meet
performance requirements.

CORBA Implementation: The specific implementation of the CORBA middleware also has
an impact on the real time performance of the system. CORBA
implementation issues include allowing a pass by reference between
objects in the same memory space, the specific transport mechanism used
to communicate between objects in the same processor space, and the
extent to which marshalling is performed. Performance considerations for
certain modems may force a specific implementation or CORBA, which
would limit the object portability.

3.2.1.6.3.1 Identify processing steps for a packet from input to output of a protocol stack

3.2.1.6.3.1.1 Unicast Packet from Ethernet to Modem

Layers and Layer Transitions Quantums
Ethernet Link Layer allocate packet buffer + strip ethernet header + convert

packet to CORBA object
Transition to IP Network Layer context switch + buffer allocation + data copy (pass by

value) + buffer deallocation + transport mechanism
overhead

IP Network Layer No additional overhead
Transition to Link Module (same processor as
network module)

context switch + buffer allocation + data copy (pass by
value) + buffer deallocation + transport mechanism
overhead

Transition to Link Module (different processor from
network module)

context switch + buffer allocation + data copy (pass by
value) + buffer deallocation + transport mechanism
overhead

Link Module (DLPI) No additional overhead
Transition to Modem Module (same processor as link
module)

context switch + buffer allocation + data copy (pass by
value) + buffer deallocation + transport mechanism
overhead

Transition to Modem Module (different processor
from link module)

context switch + buffer allocation + data copy (pass by
value) + buffer deallocation + transport mechanism
overhead

Modem Module context switch + data copy (pass by value) + buffer
deallocation

3.2.1.6.3.1.2 Multicast Packet from Ethernet to Modem (3 channels)

MSRC-5000SRD
Appendix D

D-3-61

Layers and Layer Transitions Quantums
Ethernet Link Layer context switch + buffer allocation + data copy (pass by

value) + buffer deallocation + transport mechanism
overhead

Transition to IP Network Layer context switch + buffer allocation + data copy (pass by
value) + buffer deallocation + transport mechanism
overhead

IP Network Layer No additional overhead
Transition to Link Module (same processor as
network module)

context switch + buffer allocation + data copy (pass by
value) + buffer deallocation + transport mechanism
overhead

Transition to Link Module (different processor from
network module)

context switch + buffer allocation + data copy (pass by
value) + buffer deallocation + transport mechanism
overhead * 3

Link Module (DLPI) No additional overhead
Transition to Modem Module (same processor as link
module)

context switch + buffer allocation + data copy (pass by
value) + buffer deallocation + transport mechanism
overhead * 3

Transition to Modem Module (different processor
from link module)

context switch + buffer allocation + data copy (pass by
value) + buffer deallocation + transport mechanism
overhead * 3

Modem Module context switch + data copy (pass by value) + buffer
deallocation * 3

3.2.1.6.3.1.3 Message from Application to Modem using Sockets and TCP

MSRC-5000SRD
Appendix D

D-3-62

Layers and Layer Transitions Quantums
Stream Head N/A
Transition to Sockets Module context switch + buffer allocation + data copy (pass by

value) + buffer deallocation + transport mechanism
overhead

Sockets Module No additional overhead
Transition to TCP Module context switch + buffer allocation + data copy (pass by

value) + buffer deallocation + transport mechanism
overhead

TCP Module (TPI) No additional overhead
Transition to IP Network Layer context switch + buffer allocation + data copy (pass by

value) + buffer deallocation + transport mechanism
overhead

IP Network Layer No additional overhead
Transition to Link Module (same processor as
network module)

context switch + buffer allocation + data copy (pass by
value) + buffer deallocation + transport mechanism
overhead

Transition to Link Module (different processor from
network module)

context switch + buffer allocation + data copy (pass by
value) + buffer deallocation + transport mechanism
overhead

Link Module (same processor as network module) context switch + buffer allocation + data copy (pass by
value) + buffer deallocation + transport mechanism
overhead

Transition to Modem Module (same processor as link
module)

context switch + buffer allocation + data copy (pass by
value) + buffer deallocation + transport mechanism
overhead

Transition to Modem Module (different processor
from link module)

context switch + buffer allocation + data copy (pass by
value) + buffer deallocation + transport mechanism
overhead

Modem Module context switch + data copy (pass by value) + buffer
deallocation

3.2.1.6.3.2 Identify possible QoS impacts
• Possible non-deterministic behavior

• Possibly excessive latency

• Possibly excessive processing overhead

3.2.1.6.4 Extensibility
3.2.1.6.4.1 Does the protocol implementation mechanism support addition of newly defined or

extension to existing protocol layers?
Since this approach makes extensive use of CORBA transport between application objects,
addition of newly defined protocol layers is easy, and changes in waveform implementation
(addition of waveform objects) is also easy. Protocol layers can easily be inserted as objects.
Since all objects must conform to the interface defined in IDL, new protocol objects can be
written to conform to the existing IDL and inserted into the stack.

3.2.1.6.5 Construct/Deconstruct Protocol Stacks
3.2.1.6.5.1 Address ability to add/remove layers without OS rebuild

MSRC-5000SRD
Appendix D

D-3-63

Fully supported. Since CORBA transport is used no OS rebuild is necessary to add/remove
application layers. This is simply of function of waveform application instantiation/teardown.
3.2.1.6.5.2 Address ability to distribute protocol layers across address spaces.
This is fully supported.
3.2.1.6.5.3 Address dynamic construction/deconstruction of protocol stacks
Wherever CORBA transport is used this is simply a function of waveform application
instantiation/teardown.

3.2.1.6.6 Component Interoperability
3.2.1.6.6.1 Address how components can be used between waveforms
With respect to the transport mechanism, use of CORBA transport between waveform objects
supports/enables component reuse. The limiting factors become component functionality and
interface definition, not transport.
3.2.1.6.6.2 Address how components interoperate across differing processors
Use of CORBA transport makes this transparent. CORBA Bypass adapters running on different
processors on the red and black sides must be concerned with data representation/interpretation.

3.2.1.6.7 Cost
Identify cost drivers and attempt to quantify in high level terms.

3.2.1.6.7.1 Implementation Cost
• Level of custom development – Limited to waveform objects

• Labor – Use of CORBA transport minimizes waveform development labor

• Licenses - None

• COTS – Use of CORBA transport through adapters allows maximum use of COTS.

• Use of CORBA transport allows use of “large” COTS components.

• Integration – Use of CORBA transport allows integration to concentrate on application
integration

• and not on infrastructure integration.
Potential cost of using & wrapping COTS software, such as IP stacks
3.2.1.6.7.2 Maintenance Cost
• Effect of version migration of protocol standards (e.g. IP).
As protocol standards evolve waveform applications may have to be updated. This is relatively
uncomplicated when CORBA transport is used because effort is limited to application objects
only.
3.2.1.6.7.3 Porting Cost
Use of CORBA transport yields high portability between platforms and minimizes porting costs.

MSRC-5000SRD
Appendix D

D-3-64

3.2.1.6.8 Commercial Acceptance
3.2.1.6.8.1 Current Commercial Acceptance
Although CORBA has wide commercial acceptance as a mechanism for transparently passing
information between objects, it is unlikely that CORBA will evolve as an implementation for
protocol stack layers.

• No Commercial Acceptance <---------- most likely case & current commercial case

• Some Commercial Acceptance

• Widespread Commercial Acceptance
3.2.1.6.8.2 Future Commercial Acceptance
Unknown? It is considered unlikely.

3.2.1.6.9 Security
3.2.1.6.9.1 Can support Local/Global Address Space
Yes
3.2.1.6.9.2 Does transport meet security requirements?
Not known.
3.2.1.6.9.3 How does transport handle control/status, header and plain text bypass?
Don't know, but possible security issue. Note that Raytheon/Rooftop did this with PTAPI on
WRN program (although this was not certified).

3.2.1.6.10 Ability to Adapt to Commercial Trends
Identify how the given transfer mechanism could support moving to other implementations.

Unknown. It is unlikely that CORBA will be used to implement protocol stacks in future
implementations.

MSRC-5000SRD
Appendix D

D-3-65

3.2.2 Option 2- CORBA, CORBA, Non-CORBA, Non-CORBA
Interface Type: Transfer Mechanism

Name: CORBA, CORBA, Non-CORBA transfer mechanism for Real-Time
Waveform Control across Red-to-Black Boundary, Non-CORBA transfer
mechanism for Waveform Data Flow across Red-to Black Boundary

Date: 20 MAR 00

Revision: 4.0

Author: L. Matheson

Company: ITT

3.2.2.1 Description
This alternative uses CORBA for non-real-time setup of waveform and non-real-time setting of
operation parameters, Non-CORBA transfer mechanism for Waveform Control across Red-to-
Black Boundary for real-time control, and Non-CORBA transfer mechanism for Waveform Data
Flow across the Red-to-Black Boundary.

3.2.2.2 Diagram

DM

44 77

Black Proc

RF Modem

Native
Modem API

1

2

3

ORB

INFOSEC

ORB

6

5

Red Proc

MS-188-220

ORB

HCI

8

enet

IP

UDP

Web Serv

9

CVSD

PCM

IIOP IIOP

enet

audio

KY-57

KYV-5

ORB/
IIOP

TCP

IP

CDB
Cmd By

USB

USBPC104

Modem
Adapter

1 Adapter 3
Adapter 2

PC104 USB
CDB

ORB/IIOP

TCP

IP

USB

USBCDB

Adapter 6

Adapter 5

CDB USB

USB

Audio
Adapter 9

audio

CDB
Cmd By

Adapter
8 Infc enet Audio

USB MS-188-
220 enet

----- MS-188-
220 firewall

IP

TCP

ORB/IIOP

PCM
CVSD
HCI

SINC COMMS INFO

SINC WVFM CNTL

Adapter 8

enet
A

7

4

3A

Matheson
3/19/00

2

1

A

To
Modem

3B

7

4

3A

2

1

3B

SINCGARS Packet and Voice on JTRS 2A Platform - Draft

SINC
WVFM
CNTL

SINC
COMMS

INFO

SINCGARS
Traffic

Manager

SINC Traffic Mngr

Cmnd
Bypass

4 7

CDB

Cmnd
Bypass

Adapter 4
Adapter 7

DM (Domain Manager)

Figure 1: Representation of SINCGARS Waveform on JTRS 2A Platform

Legend:

1-Modem Adapter

2-Black INFOSEC Adapter
for SINCGARS Packet
Traffic (KYV-5)

3-Black INFOSEC Adapter
for SINCGARS Voice
Traffic (KY-57)

4-Black INFOSEC Adapter
for Waveform Control
Traffic (Cmnd Bypass)

5-Red INFOSEC Adapter
for SINCGARS Packet
Traffic (KYV-5)

6-Red INFOSEC Adapter
for SINCGARS Voice
Traffic (KY-57)

7-Black INFOSEC Adapter
for Waveform Control
Traffic (Cmnd Bypass)

8-Adapter for non-CORBA
capable legacy MS-188-
220 software

9-Adapter for non-CORBA
capable audio hardware

MSRC-5000SRD
Appendix D

D-3-66

3.2.2.3 Theory of Operation
• Supports use of COTS networking software such as Internet Protocol and associated routing

and control protocols, TCP, UDP, SNMP, Web Servers, etc.

• Supports use of legacy tactical networking software such as MIL-STD-188-220, NTDR.

• Adapts COTS and legacy software into the JTRS Operating Environment through
architecture compliant adapter objects.

• Uses architecture compliant adapter objects to support non-CORBA capable hardware such
as INFOSEC crypto engine, modem and audio I/O.

• Uses CORBA transfer mechanism for inter-object communications and object control by the
JTRS Core Framework.

• All waveform dependent objects are at the Applications Layer for maximum waveform
portability.

• Protocol stacks show communications support for CORBA ORBs provided by TCP/IP.

• Firewall used on Ethernet interface to isolate internal radio IP address space from external IP
address space.

The diagrams on the following pages illustrate flow through a radio for the following types of
traffic:

• Domain Manager Control of Black Side Objects

• Waveform Data Traffic

• Waveform Control Traffic

• Waveform Voice Traffic

M
SR

C
-5000SR

D
A

ppendix D

D
-3-67

DM

44 77

Black Proc

RF Modem

Native
Modem API

1

2

3

ORB

INFOSEC

ORB

6

5

Red Proc

MS-188-220

ORB

HCI

8

enet

IP

UDP

Web Serv

9

CVSD

PCM

IIOP IIOP

enet

audio

KY-57

KYV-5

ORB/
IIOP

TCP

IP

CDB
Cmd By

USB

USBPC104

Modem
Adapter

1 Adapter 3
Adapter 2

PC104 USB
CDB

ORB/IIOP

TCP

IP

USB

USBCDB

Adapter 6

Adapter 5

CDB USB

USB

Audio
Adapter 9

audio

CDB
Cmd By

Adapter
8 Infc enet Audio

USB MS-188-
220 enet

----- MS-188-
220 firewall

IP

TCP

ORB/IIOP

PCM
CVSD
HCI

SINC COMMS INFO

SINC WVFM CNTL

Adapter 8

enet
A

7

4

3A

Matheson
3/19/00

2

1

A

To
Modem

3B

7

4

3A

2

1

3B

SINCGARS Packet and Voice on JTRS 2A Platform - Domain Manager Control of Black Side Object

SINC
WVFM
CNTL

SINC
COMMS

INFO

SINCGARS
Traffic

Manager

SINC Traffic Mngr

Cmnd
Bypass

4 7

CDB

Cmnd
Bypass

Adapter 4
Adapter 7

DM (Domain Manager)

Figure 2: Domain Manager Control Traffic uses CORBA Transfer Mechanism only

Legend:

1-Modem Adapter

2-Black INFOSEC Adapter
for SINCGARS Packet
Traffic (KYV-5)

3-Black INFOSEC Adapter
for SINCGARS Voice
Traffic (KY-57)

4-Black INFOSEC Adapter
for Waveform Control
Traffic (Cmnd Bypass)

5-Red INFOSEC Adapter
for SINCGARS Packet
Traffic (KYV-5)

6-Red INFOSEC Adapter
for SINCGARS Voice
Traffic (KY-57)

7-Black INFOSEC Adapter
for Waveform Control
Traffic (Cmnd Bypass)

8-Adapter for non-CORBA
capable legacy MS-188-
220 software

9-Adapter for non-CORBA
capable audio hardware

M
SR

C
-5000SR

D
A

ppendix D

D
-3-68

DM

44 77

Black Proc

RF Modem

Native
Modem API

1

2

3

ORB

INFOSEC

ORB

6

5

Red Proc

MS-188-220

ORB

HCI

8

enet

IP

UDP

Web Serv

9

CVSD

PCM

IIOP IIOP

enet

audio

KY-57

KYV-5

ORB/
IIOP

TCP

IP

CDB
Cmd By

USB

USBPC104

Modem
Adapter

1 Adapter 3
Adapter 2

PC104 USB
CDB

ORB/IIOP

TCP

IP

USB

USBCDB

Adapter 6

Adapter 5

CDB USB

USB

Audio
Adapter 9

audio

CDB
Cmd By

Adapter
8 Infc enet Audio

USB MS-188-
220 enet

----- MS-188-
220 firewall

IP

TCP

ORB/IIOP

PCM
CVSD
HCI

SINC COMMS INFO

SINC WVFM CNTL

Adapter 8

enet
A

7

4

3A

Matheson
3/19/00

2

1

A

To
Modem

3B

7

4

3A

2

1

3B

SINCGARS Packet and Voice on JTRS 2A Platform - Input Unicast Ethernet Packet and Output on Modem

SINC
WVFM
CNTL

SINC
COMMS

INFO

SINCGARS
Traffic

Manager

SINC Traffic Mngr

Cmnd
Bypass

4 7

CDB

Cmnd
Bypass

Adapter 4
Adapter 7

DM (Domain Manager)

Figure 3: Waveform Data Traffic uses non-CORBA Transfer Mechanism across Red-Black Boundary

M
SR

C
-5000SR

D
A

ppendix D

D
-3-69

DM

44 77

Black Proc

RF Modem

Native
Modem API

1

2

3

ORB

INFOSEC

ORB

6

5

Red Proc

MS-188-220

ORB

HCI

8

enet

IP

UDP

Web Serv

9

CVSD

PCM

IIOP IIOP

enet

audio

KY-57

KYV-5

ORB/
IIOP

TCP

IP

CDB
Cmd By

USB

USBPC104

Modem
Adapter

1 Adapter 3
Adapter 2

PC104 USB
CDB

ORB/IIOP

TCP

IP

USB

USBCDB

Adapter 6

Adapter 5

CDB USB

USB

Audio
Adapter 9

audio

CDB
Cmd By

Adapter
8 Infc enet Audio

USB MS-188-
220 enet

----- MS-188-
220 firewall

IP

TCP

ORB/IIOP

PCM
CVSD
HCI

SINC COMMS INFO

SINC WVFM CNTL

Adapter 8

enet
A

7

4

3A

Matheson
3/19/00

2

1

A

To
Modem

3B

7

4

3A

2

1

3B

SINCGARS Packet and Voice on JTRS 2A Platform - Packet enters at TCP socket and output on Modem

SINC
WVFM
CNTL

SINC
COMMS

INFO

SINCGARS
Traffic

Manager

SINC Traffic Mngr

Cmnd
Bypass

4 7

CDB

Cmnd
Bypass

Adapter 4
Adapter 7

DM (Domain Manager)

TCP

Figure 4: Waveform Data Traffic uses non-CORBA Transfer Mechanism across Red-Black Boundary

M
SR

C
-5000SR

D
A

ppendix D

D
-3-70

DM

44 77

Black Proc

RF Modem

Native
Modem API

1

2

3

ORB

INFOSEC

ORB

6

5

Red Proc

MS-188-220

ORB

HCI

8

enet

IP

UDP

Web Serv

9

CVSD

PCM

IIOP IIOP

enet

audio

KY-57

KYV-5

ORB/
IIOP

TCP

IP

CDB
Cmd By

USB

USBPC104

Modem
Adapter

1 Adapter 3
Adapter 2

PC104 USB
CDB

ORB/IIOP

TCP

IP

USB

USBCDB

Adapter 6

Adapter 5

CDB USB

USB

Audio
Adapter 9

audio

CDB
Cmd By

Adapter
8 Infc enet Audio

USB MS-188-
220 enet

----- MS-188-
220 firewall

IP

TCP

ORB/IIOP

PCM
CVSD
HCI

SINC COMMS INFO

SINC WVFM CNTL

Adapter 8

enet
A

7

4

3A

Matheson
3/19/00

2

1

A

To
Modem

3B

7

4

3A

2

1

3B

SINCGARS Packet and Voice on JTRS 2A Platform - Waveform Control (Bidirectional)

SINC
WVFM
CNTL

SINC
COMMS

INFO

SINCGARS
Traffic

Manager

SINC Traffic Mngr

Cmnd
Bypass

4 7

CDB

Cmnd
Bypass

Adapter 4
Adapter 7

DM (Domain Manager)

Figure 5: Waveform Control uses non_CORBA Transfer Mechanism across Red-Black Boundary

M
SR

C
-5000SR

D
A

ppendix D

D
-3-71

DM

44 77

Black Proc

RF Modem

Native
Modem API

1

2

3

ORB

INFOSEC

ORB

6

5

Red Proc

MS-188-220

ORB

HCI

8

enet

IP

UDP

Web Serv

9

CVSD

PCM

IIOP IIOP

enet

audio

KY-57

KYV-5

ORB/
IIOP

TCP

IP

CDB
Cmd By

USB

USBPC104

Modem
Adapter

1 Adapter 3
Adapter 2

PC104 USB
CDB

ORB/IIOP

TCP

IP

USB

USBCDB

Adapter 6

Adapter 5

CDB USB

USB

Audio
Adapter 9

audio

CDB
Cmd By

Adapter
8 Infc enet Audio

USB MS-188-
220 enet

----- MS-188-
220 firewall

IP

TCP

ORB/IIOP

PCM
CVSD
HCI

SINC COMMS INFO

SINC WVFM CNTL

Adapter 8

enet
A

7

4

3A

Matheson
3/19/00

2

1

A

To
Modem

3B

7

4

3A

2

1

3B

SINCGARS Packet and Voice on JTRS 2A Platform - Voice Transmit/Receive

SINC
WVFM
CNTL

SINC
COMMS

INFO

SINCGARS
Traffic

Manager

SINC Traffic Mngr

Cmnd
Bypass

4 7

CDB

Cmnd
Bypass

Adapter 4
Adapter 7

DM (Domain Manager)

Figure 6: Waveform Voice Traffic uses non-CORBA Transfer Mechanism across Red-Black Boundary

MSRC-5000SRD
Appendix D

D-3-72

3.2.2.4 OE
This approach uses the transfer mechanism services provided by the OE for communications
between waveform objects in all cases except for transport across the Red-to-Black Boundary
and within COTS and Legacy code objects.

3.2.2.5 Layer Applicability
Modem, Link, Network (3A, 3B), Transport

3.2.2.6 FOM Analysis

3.2.2.6.1 Waveform Portability
3.2.2.6.1.1 Porting Activity Identification
This section identifies the porting steps required for a given transfer mechanism alternative to be
ported given certain stimuli.

3.2.2.6.1.1.1 Porting Stimuli Definitions

Stimulus Description Classification
Environment Change:Different Processor Waveform must be ported to a different processor Non-recurring
Environment Change:Different OS Waveform must be moved to a different OS Non-recurring
Environment Change:Different Bus Waveform must be moved to a different bus

structure
Non-recurring

Protocol Standard Migration:COTS Stack Waveform requires new capabilities as reflected
in new protocol standards (e.g. implementation of
IP RFCs). The networking implementation uses
COTS stack components.

Non-recurring

Protocol Standard Migration:Custom Stack Waveform requires new capabilities as reflected
in new protocol standards (e.g. implementation of
IP RFCs). The networking implementation uses
custom stack components.

Non-recurring

New Transport Protocol: COTS Stack A new transport protocol must be added (e.g. to
support reliable multicast). The networking
implementation uses COTS stack components.

Non-recurring

New Transport Protocol: Custom Stack A new transport protocol must be added (e.g. to
support reliable multicast). The networking
implementation uses custom stack components

Non-recurring

3.2.2.6.1.1.2 Porting Step Definitions

MSRC-5000SRD
Appendix D

D-3-73

Porting Step Description Effort Level
Recompilation Recompilation of networking part of waveform. Minimal
Thin Layer Port Port of OS/Kernel isolation layer Moderate
Bus Layer Port Port of bus communication layer Moderate
Mechanism Port Port of networking functionality to the chosen implementation

mechanism (i.e. CORBA, STREAMS. Etc)
Extensive

Application Port Implementation in a particular environment requires porting of one
or more applications. For example a custom socket implementation
may invalidate the use of select() in applications.

Minimal-Extensive

Capability Extension Requires the extension of existing software to add new capabilities Moderate-Extensive
OS Rebuild Requires rebuilding the OS. Minimal

3.2.2.6.1.1.3 Porting Steps Required for a Given Stimulus

Environment Change (non-recurring) Waveform Protocol Standard
Migration (non-recurring)

New Waveform Transport
Protocol (non-recurring)

Different
Processor

Different
OS

Different
Bus

COTS Stack Custom Stack COTS Stack Custom Stack

Recompilation Recompilation1,
Mechanism
Port2

No Impact OS rebuild. Capability
extension with
OS rebuild.

OS rebuild. Capability
extension with
OS rebuild.

1. Dependent on an ORB being provided to abstract the OS.
2. If the OS stack implementations are different, i.e. BSD and STREAMS.
3.2.2.6.1.2 Impacts to CF caused by using the transfer mechanism.
None to minimal because the transfer mechanisms lie either below the CF (at the same or lower
level than the GIOP) or above the CF.

3.2.2.6.2 Ability to support networking/non-networking waveforms
3.2.2.6.2.1 Supporting existing networking waveforms.
See Diagrams 3-1 to 3-4 for an example how SINCGARS Packet/INC is supported.
Use of adapters for COTS code (e.g. IP router, Web Server)
Use of adapters for Legacy Code (e.g. MS-188-220)
Use of adapters for non-CORBA capable hardware (e.g. modem adapter)
Use of CORBA transfer mechanism for everything except transport of Waveform real-time
control and data traffic across Red-to-Black Boundary.
Use of Non-CORBA transfer mechanism across Red-to-Black Boundary for Waveform real-time
control and data.
3.2.2.6.2.2 Supporting existing non-networking waveforms.
See Diagram 3-5 for an example how SINCGARS Voice is supported.
Use of adapters for non-CORBA capable hardware (e.g. audio and modem adapters)

MSRC-5000SRD
Appendix D

D-3-74

Use of CORBA transfer mechanism for everything except transport of Waveform real-time
control and data traffic across Red-to-Black Boundary.
Use of non-CORBA transfer mechanism across Red-to-Black Boundary for Waveform real-time
control and data.
3.2.2.6.2.3 Supporting future networking waveforms.
Approach would still be to use CORBA transfer mechanism for everything except transport of
Waveform real-time control and data traffic across Red-to-Black Boundary.
Overhead and performance of complete OE is a factor in support of high-throughput/low-latency
future waveforms.
3.2.2.6.2.4 Supporting future non-networking waveforms.
Approach would still be to use CORBA transfer mechanism for everything except transport of
Waveform real-time control and data traffic across Red-to-Black Boundary.
Overhead and performance of complete OE is a factor in support of high-throughput/low-latency
future waveforms.

3.2.2.6.3 Performance
The following tables quantify in relative terms the steps necessary for a packet to traverse the
radio infrastructure. Protocol specific processing and routing are not included as these steps
would be common to all stack implementations.
3.2.2.6.3.1 Transfer Mechanism Packet Flow

3.2.2.6.3.1.1 Unicast Packet from Ethernet to Modem

MSRC-5000SRD
Appendix D

D-3-75

Layers and Layer Transitions Quantums
Ethernet Link Layer allocate packet buffer + strip ethernet header
Transition to IP Network Layer
IP Network Layer IP Forwarding
Transition to MS-188-220 Module Allocate packet buffer + copy packet + free IP packet buffer +

context switch
MS-188-220 Module (Intranet and Link Layers) Prepend Intranet and Link Headers
Transition to Adapter 8 Allocate packet buffer + copy packet + free MS-188-220 packet

buffer + context switch
Transition to Red INFOSEC Adapter 5 Allocate packet buffer + copy packet + free Adapter 8 packet

buffer + context switch + CORBA Transfer Mechanism
overhead

Red INFOSEC Adapter Copy packet into CRYPTO Engine + free packet buffer +
context switch

CRYPTO Engine Encrypt
Black INFOSEC Adapter Allocate packet buffer + Copy packet from CRYPTO Engine +

context switch
Transition to Modem Adapter (1) Allocate packet buffer + copy packet + free Adapter 5 packet

buffer + context switch + CORBA Transfer Mechanism
overhead

Modem Adapter Copy packet into Modem Dual Port Memory + free packet
buffer + context switch

Modem Module Copy packet from Modem Dual Port Memory

3.2.2.6.3.1.2 Multicast Packet from Ethernet to Modem(s) (3 channels)
Layers and Layer Transitions Quantums
Ethernet Link Layer allocate packet buffer + strip ethernet header
Transition to IP Network Layer
IP Network Layer IP Forwarding
Transition to MS-188-220 Module (Allocate packet buffer + copy packet + free IP packet buffer +

context switch) *3
MS-188-220 Module (Intranet and Link Layers) (Prepend Intranet and Link Headers)*3
Transition to Adapter 8 (Allocate packet buffer + copy packet + free MS-188-220

packet buffer + context switch)*3
Transition to Red INFOSEC Adapter 5 (Allocate packet buffer + copy packet + free Adapter 8 packet

buffer + context switch + CORBA Transfer Mechanism
overhead)*3

Red INFOSEC Adapter (Copy packet into CRYPTO Engine + free packet buffer +
context switch)*3

CRYPTO Engine Encrypt (all three will process in parallel)
Black INFOSEC Adapter (Allocate packet buffer + Copy packet from CRYPTO Engine +

context switch)*3
Transition to Modem Adapter (1) (Allocate packet buffer + copy packet + free Adapter 5 packet

buffer + context switch + CORBA Transfer Mechanism
overhead)*3

Modem Adapter (Copy packet into Modem Dual Port Memory + free packet
buffer + context switch)*3

Modem Module Copy packet from Modem Dual Port Memory (all three will
process in parallel)

MSRC-5000SRD
Appendix D

D-3-76

3.2.2.6.3.1.3 Message from Application to Modem using Sockets and TCP
Layers and Layer Transitions Quantums
Transition from Application to Sockets Module Allocate packet buffer(s) + copy packet + context switch
Socket Module Translate Socket semantics to TPI semantics
Transition from Sockets Module to TCP Layer
TCP Layer Prepend TCP Header + Split Message + Increment

Reference Count of buffer(s)
Transition from TCP Layer to IP Network Layer
IP Network Layer Prepend IP Header + IP Forwarding
Transition to MS-188-220 Module Allocate packet buffer + copy packet + free IP packet buffer

+ context switch
MS-188-220 Module (Intranet and Link Layers) Prepend Intranet and Link Headers
Transition to Adapter 8 Allocate packet buffer + copy packet + free MS-188-220

packet buffer + context switch
Transition to Red INFOSEC Adapter 5 Allocate packet buffer + copy packet + free Adapter 8

packet buffer + context switch + CORBA Transfer
Mechanism overhead

Red INFOSEC Adapter Copy packet into CRYPTO Engine + free packet buffer +
context switch

CRYPTO Engine Encrypt
Black INFOSEC Adapter Allocate packet buffer + Copy packet from CRYPTO

Engine + context switch
Transition to Modem Adapter (1) Allocate packet buffer + copy packet + free Adapter 5

packet buffer + context switch + CORBA Transfer
Mechanism overhead

Modem Adapter Copy packet into Modem Dual Port Memory + free packet
buffer + context switch

Modem Module Copy packet from Modem Dual Port Memory

3.2.2.6.3.2 Identify possible QoS impacts
• Possible Non-deterministic behavior

• Mapping into standard/evolving mechanisms

3.2.2.6.4 Extensibility
3.2.2.6.4.1 Does the protocol implementation mechanism support addition of newly defined or

extension to existing protocol layers?
Since this approach makes extensive use of CORBA transfer mechanism between application
objects, addition of newly defined protocol layers is easy, and changes in waveform
implementation (addition of waveform objects) is also easy.
Changes and extensions to messages passed via Non-CORBA transfer mechanism across the
Red-to-Black boundary do require that the Bypass Adapters be modified.

3.2.2.6.5 Construct/Deconstruct Protocol Stacks
3.2.2.6.5.1 Address ability to add/remove layers without OS rebuild
Wherever CORBA transfer mechanism are used no OS rebuild is necessary to add/remove
application layers. This is simply of function of waveform application instantiation/teardown.
Modify the Domain Profile.

MSRC-5000SRD
Appendix D

D-3-77

Where Non-CORBA transfer mechanism is used for transfer mechanism across the Red-to-Black
boundary, no OS rebuild is necessary either. This is simply of function of waveform application
instantiation/teardown.
Need support to add and remove protocol layers below the COTS IP stack. OS rebuild required
for new transport layers, e.g. XTP.
3.2.2.6.5.2 Address ability to distribute protocol layers across address spaces.
This is fully supported.
3.2.2.6.5.3 Address dynamic construction/deconstruction of protocol stacks
Refer to x.6.5.1

3.2.2.6.6 Component Interoperability
3.2.2.6.6.1 Address how components can be used between waveforms
With respect to the transfer mechanism, use of CORBA transfer mechanism between waveform
objects supports/enables component reuse. The limiting factors become component functionality
and interface definition, not transfer mechanism.
3.2.2.6.6.2 Address how components interoperate across differing processors
Use of CORBA transfer mechanism makes this transparent. Non-CORBA transfer mechanism
adapters running on different processors on the red and black sides must be concerned with data
representation/interpretation.

3.2.2.6.7 Cost
Identify cost drivers and attempt to quantify in high level terms.

3.2.2.6.7.1 Implementation Cost
• Level of custom development – Limited to waveform objects and bypass adapters only

• Labor – Use of CORBA transfer mechanism minimizes waveform development labor

• Licenses - None

• COTS – Use of CORBA transfer mechanism through adapters allows maximum use of COTS.

• Integration – Use of CORBA transfer mechanism allows integration to concentrate on
application integration and not on infrastructure integration.

3.2.2.6.7.2 Maintenance Cost
Effect of version migration of protocol standards (e.g. IP).

As protocol standards evolve waveform applications may have to be updated. This is relatively
uncomplicated when CORBA transfer mechanism is used because effort is limited to application
objects only.
Non-CORBA transfer mechanism adapters may also have to be updated for any new
messages/formats.
3.2.2.6.7.3 Porting Cost

MSRC-5000SRD
Appendix D

D-3-78

This is where use of CORBA transfer mechanism between application object is a clear winner.
Use of CORBA transfer mechanism yields high portability between platforms and minimizes
porting costs.
Non-CORBA transfer mechanism adapters are probably waveform specific so will have to be
modified for any INFOSEC hardware differences between platforms.

3.2.2.6.8 Commercial Acceptance
3.2.2.6.8.1 Current Commercial Acceptance
SCA use of CORBA transfer mechanism for communications between distributed objects follows
commercial precedent, so some degree of commercial acceptance can reasonably be expected.
Rated as a 3.

• No Commercial Acceptance

• Some Commercial Acceptance

• Widespread Commercial Acceptance
Note: These can directly map to 1,3,9 rating system.
3.2.2.6.8.2 Future Commercial Acceptance
SCA use of CORBA transfer mechanism for communications between distributed objects follows
commercial precedent, so some degree of commercial acceptance can reasonably be expected.
Rated as a 3.

3.2.2.6.9 Security
3.2.2.6.9.1 Can support Local/Global Address Space?

3.2.2.6.9.2 Does transfer mechanism meet security requirements?
There is security concern about ability to monitor any messages transported by CORBA across
the Red-to-Black boundary.
3.2.2.6.9.3 How does transfer mechanism handle control/status, header and plain text bypass?
Don't know, but possible security issue.

3.2.2.6.10 Ability to Adapt to Commercial Trends
Identify how the given transfer mechanism could support moving to other implementations.

Unknown.

MSRC-5000SRD
Appendix D

D-3-79

3.2.3 Option 3 – CORBA, CORBA, CORBA via reference, CORBA via reference
Interface Type: Transfer Mechanism

Name: CORBA, CORBA, CORBA via reference, CORBA via reference

Date: 20 MAR 00

Revision: 5.0

Author: Fred Mabe

Company: Rockwell Collins (fdmabe@collins.rockwell.com)

3.2.3.1 Description
This alternative (option #3) uses CORBA for real/non-real time control and data flow. This
option advocates when the there is a real time requirement which can not be met via the CORBA
standard IOP, the standard CORBA IOP should be augmented. The augmentations discussed are:
the ability to use CORBA pass by reference (e.g. shared memory transport and shared a RAM
card) and/or grouping larger groups of protocol options together. Option #3 is a superset of
transfer mechanism options #1 and #2 with the addition of a pass by reference when the real time
requirements necessitate the speed.

3.2.3.2 Diagram

mailto:jasteven@collins.rockwell.com

MSRC-5000SRD
Appendix D

D-3-80

ORB

1.Ethernet

3 IP

 modem

ORB
2.

Ethernet
Driver/OR
B SHIM

Kernel

4. 188-220
3a, 2a, Modem

Driver

2 Ethernet
Driver/OR
B SHIM

3. IP

Shared RAM

CF Buffer
Management

POSIX memory
management

GIOP

ORB

Determine Transport to
use via address mask

Standard
IOP

Shared
RAM

Transport

CF Buffer
Management

POSIX memory
management

GIOP

ORB

Determine Transport to
use via address mask

Standard
IOP

Shared
RAM

Transport

Figure 1

3.2.3.3 Theory of Operation
Figure 1 is an example of data flowing using transfer mechanism option #3. The goal of option
#3 is to abstract changes to the transfer mechanism via the CF interface and the CORBA ORB.

In Figure 1 the top portion of the figure displays the data flow inside the radio. The following
steps describe an incoming Ethernet packet as it flows through the radio to be transmitted on a
188-220 subnet:

1. An interrupt has been processed by the kernel, which indicates the an Ethernet packet has
arrived.

2. The Ethernet driver/ORB shim uses a buffer extracted from the CF buffer interface to copy
the Ethernet data via the driver. The Ethernet driver/ORB makes a standard CORBA call to
send the data to the IP layer.

3. The IP layer routes the packet to the 188-220 subnet and makes a standard CORBA call to
send the data to the 188-220 subnet.

4. The 188-220 3a & 2a processes the IP packet. Assuming the modem driver does reside on
the same card as the 188-220 link layer, a call will be made to the Modem Driver. The
Modem Driver will process the buffer, send it to the modem, and release the buffer.

MSRC-5000SRD
Appendix D

D-3-81

The lower portion of figure #1 shows the details of the transfer mechanism interface between the
Ethernet Driver/ORB SHIM and the IP object.

3.2.3.3.1 Red Side Processing and Black Side Processing
The method of data flow will be the same for both the red and the black side. The black and red
separation will be accomplish the same way as option #2: each transport endpoint which crosses
the INFOSEC boundary will have a bypass adapter which will check message content . CORBA
bypass adapters will be waveform specific; so will have to be modified for any INFOSEC
hardware differences between platforms (note: security mechanisms may have to be
augmented/adjusted according to the outcome of the IPT Security working group).

3.2.3.4 OE
CORBA, POSIX OS, and CF memory management, which is similar to STREAMS memory
management model, abstracts the OE from the application/protocol.

3.2.3.5 Layer Applicability
CORBA is applicable to all layers (Modem, Link, Network (3A, 3B), Transport). CORBA,
POSIX OS, and CF abstracts the application/protocol from the application/protocol.

3.2.3.6 FOM Analysis

3.2.3.6.1 Waveform Portability
3.2.3.6.1.1 Porting Activity Identification
This section identifies the porting steps required for a given transfer mechanism alternative to be
ported given certain Porting Activity Identification stimuli.

3.2.3.6.1.1.1 Porting Stimuli Definitions

MSRC-5000SRD
Appendix D

D-3-82

Stimulus Description Classification
Environment Change:Different
Processor

Waveform must be ported to a different processor Non-recurring

Environment Change:Different OS Waveform must be moved to a different OS Non-recurring
Environment Change:Different Bus Waveform must be moved to a different bus structure Non-recurring
Protocol Standard Migration:COTS
Stack

Waveform requires new capabilities as reflected in new
protocol standards (e.g. implementation of IP RFCs).
The networking implementation uses COTS stack
components.

Non-recurring

Protocol Standard
Migration:Custom Stack

Waveform requires new capabilities as reflected in new
protocol standards (e.g. implementation of IP RFCs).
The networking implementation uses custom stack
components.

Non-recurring

New Transport Protocol: COTS
Stack

A new transport protocol must be added (e.g. to
support reliable multicast). The networking
implementation uses COTS stack components.

Non-recurring

New Transport Protocol: Custom
Stack

A new transport protocol must be added (e.g. to
support reliable multicast). The networking
implementation uses custom stack components

Non-recurring

3.2.3.6.1.1.2 Porting Step Definitions

Porting Step Description Effort Level
Recompilation Recompilation of networking part of waveform. Minimal
Thin Layer Port Port of OS/Kernel isolation layer Moderate
Bus Layer Port Port of bus communication layer Moderate
Mechanism Port Port of networking functionality to the chosen implementation

mechanism (i.e. CORBA, STREAMS. Etc)
Extensive

Application Port Implementation in a particular environment requires porting of
one or more applications. For example a custom socket
implementation may invalidate the use of select() in applications.

Minimal-Extensive

Capability Extension Requires the extension of existing software to add new
capabilities

Moderate-Extensive

OS Rebuild Requires rebuilding the OS. Minimal

3.2.3.6.1.1.3 Porting Steps Required for a Given Stimulus

MSRC-5000SRD
Appendix D

D-3-83

Environment Change (non-recurring) Protocol Standard
Migration (recurring)

New Transfer mechanism
Protocol (recurring)

Different
Processor

Different
OS

Different Bus COTS Stack Custom
Stack

COTS
Stack

Custom
Stack

Recompilation No impact1,

3 , or
Recompilat
ion1, 3 ,

No impact1, 3, and 4

(Bus abstracted
by ORB) to code
being ported.
However ORB
will have to be
modified and/or
recompiled.
Bus Layer Port .

Recompilation
2 or
Capability
Extension 1, 2,3

and 4:
.

Extend
capability 1,

3 and 4:

Recompilati
on 2 or
Capability
Extension4

Recompilati
on 2 or
Capability
Extension4

1. Assuming SW developed for POSIX OS or is OS independent.
2. If capability extension is available commercially
3. Assuming ORB/CF and /Networking-API supports pass by reference interface: either by
coping or actually passing by reference between processes.
4. If the capability requires extension of Networking-API, develop IDL for Networking-API to
interface with ORB.
3.2.3.6.1.2 Assess Impacts to CF caused by using the transfer mechanism.
Add a class for buffer management to CF or to all Networking-APIs.

3.2.3.6.2 Ability to support networking/non-networking waveforms
Yes, this method will support networking/non-networking waveforms.
The design/decision process that should be followed:
1. Separate waveform into objects, which may be reusable.
2. Determine the real time constraints between objects.
3. Determine how to meet the real time requirements (CORBA by value, CORBA by reference,
and/or coupling objects because of real time constraints).
See Figure 1 for an example.
3.2.3.6.2.1 Supporting existing networking waveforms
See Diagram in Figure 1 for an example how 188-220 is supported.
Use of adapters for COTS code (e.g. IP router, Web Server)
Use of adapters for Legacy Code (e.g. MS-188-220)
Use of adapters for non-CORBA capable hardware (e.g. modem adapter)
3.2.3.6.2.2 Supporting existing non-networking waveforms
Use of adapters for non-CORBA capable hardware (e.g. audio and modem adapters)
Use of CORBA transfer mechanism for everything except transport of Waveform real-time
control and data traffic across Red-to-Black Boundary.

MSRC-5000SRD
Appendix D

D-3-84

3.2.3.6.2.3 Supporting future networking waveforms.
Use of adapters for COTS code (e.g. IP router, Web Server)
Create new networking waveforms with a CORBA/IDL interface.
3.2.3.6.2.4 Supporting future non-networking waveforms.
Use of adapters for COTS code (e.g. IP router, Web Server)
Create new networking waveforms with a CORBA/IDL interface.

3.2.3.6.3 Performance
The following tables quantify in relative terms the steps necessary for a packet to traverse the
protocol stack for a given stack implementation. Protocol specific processing and routing are not
included as these steps would be common to all stack implementations. Transfer Mechanism
Packet Flow

3.2.3.6.3.1 Transfer Mechanism Packet Flow

3.2.3.6.3.1.1 Unicast Packet from Ethernet to Modem

Layers and Layer Transitions Quantums
Ethernet Link Layer (same or different
processor)

• Allocate packet buffer from CF/shared ram + strip Ethernet
header

• Insert ORB GIOP (does marshalling /security) :
Note: May be optimized if in same processor as N-1 protocol or N+1
protocol; or not required if coupled as one CORBA object.

IP Network Layer (same or different
processor)

• Context Switch (same processor)
• Remove ORB GIOP
• Insert ORB GIOP
Note: May be optimized if in same processor as N-1 protocol or N+1
protocol; or not required if coupled as one CORBA object.

hLink Module (same or different processor) • Context Switch (same processor)
• Remove ORB GIOP
• Prepend Link headers (note may use same schema as streams to

have header buffer and body buffers separate.)
• Insert ORB GIOP
Note: May be optimized if in same processor as N-1 protocol or N+1
protocol; or not required if coupled as one CORBA object.

Modem Module (same or different
processor)

• Context Switch (same processor)
• Remove ORB GIOP
• Free buffer
Note: May be optimized if in same processor as N-1 protocol or N+1
protocol; or not required if coupled as one CORBA object.

3.2.3.6.3.1.2 Multicast Packet from Ethernet to Modem (3 channels)

MSRC-5000SRD
Appendix D

D-3-85

Layers and Layer Transitions Quantums
Ethernet Link Layer (same or different
processor)

• Allocate packet buffer from CF/shared ram + strip ethernet
header

• Insert ORB GIOP (does marshalling /security) :
Note: May be optimized if in same processor as N-1 protocol or N+1
protocol; or not required if coupled as one CORBA object.

IP Network Layer (same or different
processor)

• Context Switch (same processor)
• Remove ORB GIOP
• Increment reference count on packet for 3 channels (no copies

assuming on same shared ram card)
• Insert ORB GIOP
Note: May be optimized if in same processor as N-1 protocol or N+1
protocol; or not required if coupled as one CORBA object.

Link Module (same or different processor) • Context Switch (same processor)
• Remove ORB GIOP
• Prepend Link headers (note may use same schema as streams to

have header buffer and body buffers separate.)
• Insert ORB GIOP
Note: May be optimized if in same processor as N-1 protocol or N+1
protocol; or not required if coupled as one CORBA object.

 Modem Module (same or different
processor)

• Context Switch (same processor)
• Remove ORB GIOP
• Free buffers * 3
Note: May be optimized if in same processor as N-1 protocol or N+1
protocol; or not required if coupled as one CORBA object.

3.2.3.6.3.1.3 Message from Application to Modem using Sockets and TCP

MSRC-5000SRD
Appendix D

D-3-86

Layers and Layer Transitions Quantums
Application (same or different processor) • Allocate packet buffer from CF/shared ram insert application data

• Insert ORB GIOP (does marshalling /security) :
Note: May be optimized if in same processor as N-1 protocol or N+1
protocol; or not required if coupled as one CORBA object.

TCP Module via sockets Networking-API
(same or different processor)

• Context Switch (same processor)
• Remove ORB GIOP
• Prepend TCP header (note may use same schema as streams to

have header buffer and body buffers separate.)
• Insert ORB GIOP
Note: May be optimized if in same processor as N-1 protocol or N+1
protocol; or not required if coupled as one CORBA object.

IP Network Layer (same or different
processor)

• Context Switch (same processor)
• Remove ORB GIOP
• Prepend IP header (note may use same schema as streams to have

header buffer and body buffers separate.)
• Insert ORB GIOP
Note: May be optimized if in same processor as N-1 protocol or N+1
protocol; or not required if coupled as one CORBA object.

Link Module (same or different
processor)

• Context Switch (same processor)
• Remove ORB GIOP
• Prepend Link header (note may use same schema as streams to

have header buffer and body buffers separate.)
• Insert ORB GIOP
Note: May be optimized if in same processor as N-1 protocol or N+1
protocol; or not required if coupled as one CORBA object.

Modem Module (same or different
processor)

• Context Switch (same processor)
• Remove ORB GIOP
• Free buffers
Note: May be optimized if in same processor as N-1 protocol or N+1
protocol; or not required if coupled as one CORBA object.

3.2.3.6.3.2 Identify other possible QoS impacts
The QoS available in STREAMS is not currently addressed in this option. It is TBD how to QoS
between CORBA objects.

3.2.3.6.4 Extensibility
3.2.3.6.4.1 Does the protocol transfer mechanism support addition of newly defined or extension

to existing protocol layers?
Yes

3.2.3.6.5 Construct/Deconstruct Protocol Stacks
3.2.3.6.5.1 Address ability to add/remove layers without OS rebuild
• Application (Yes)

• Transport (Yes)

• Network (Yes)

MSRC-5000SRD
Appendix D

D-3-87

• Link (Yes)

• Modem (Yes)
3.2.3.6.5.2 Address ability to distribute protocol layers across address spaces
Since all dependencies are on the ORB, which abstracts the transfer mechanism, applications or
protocol layers can be moved transparently: it will only require a recompile when different
processors are involved.
3.2.3.6.5.3 Dynamic stack construction/destruction
This question is addressed in 6.5.1. Stack construction/destruction can occur while other
waveforms are running.

3.2.3.6.6 Component Interoperability
3.2.3.6.6.1 Address how components can be used between waveforms
Accomplish via CORBA standard mechanism.
3.2.3.6.6.2 Address how components interoperate across differing processors
Accomplish via CORBA standard mechanism.
3.2.3.6.6.3 Address dynamic construction/deconstruction of protocol stacks.
Accomplish via CORBA standard mechanism.

3.2.3.6.7 Cost
Identify cost drivers and attempt to quantify in high level terms.

3.2.3.6.7.1 Implementation Cost
• Level of custom development – Limited to waveform objects and bypass adapters only.

• Labor – Use of CORBA middleware minimizes waveform development labor.

• Licenses – The ORB.

• COTS – Use of CORBA transfer mechanism through adapters allows maximum use of COTS.

• Integration – Use of CORBA transfer mechanism allows integration to concentrate on
application integration and not on infrastructure integration.

3.2.3.6.7.2 Maintenance Cost
As protocol standards evolve waveform applications may have to be updated. This is relatively
uncomplicated when the CORBA middleware is used because effort is limited to the object itself;
CORBA & CF abstract the environment.
CORBA Bypass adapters may also have to be updated for any new messages/formats.
3.2.3.6.7.3 Porting Cost
This is where the use of CORBA transfer mechanism between application object is a clear
winner. Use of CORBA transfer mechanism yields high portability between platforms and
minimizes porting costs.

MSRC-5000SRD
Appendix D

D-3-88

CORBA Bypass adapters are probably waveform specific so will have to be modified for any
INFOSEC hardware differences between platforms.

3.2.3.6.8 Commercial Acceptance
3.2.3.6.8.1 Current Commercial Acceptance
SCA use of CORBA as middleware for communications between distributed objects follows
commercial precedent, so some degree of commercial acceptance can expected.
Note: These can directly map to 1,3,9 rating system.
3.2.3.6.8.2 Future Commercial Acceptance
This is essentially crystal ball stuff and should receive less weight than current commercial
acceptance.

3.2.3.6.9 Security
3.2.3.6.9.1 Can support Local/Global Address Space

3.2.3.6.9.2 Does transfer mechanism meet security requirements?
Unknown
3.2.3.6.9.3 How does the transfer mechanism handle control/status, header and plain text

bypass?
Unknown

3.2.3.6.10 Ability to Adapt to Commercial Trends
Identify how the given transfer mechanism could support moving to other implementations.

Unknown

MSRC-5000SRD
Appendix D

D-3-89

3.2.4 Option 4 – CORBA, CORBA, STREAMS, STREAMS
Interface Type: Transfer Mechanism

Name: CORBA, CORBA, STREAMS, STREAMS

Date: 20 MAR 00

Revision: 3.0

Author: Bruce Baker

Company: Raytheon

3.2.4.1 Description
This alternative uses STREAMS for real time data flow and real time control for networking
protocol layers. It also uses STREAMS drivers as the low level interface to the INFOSEC and
for the low-level interface to the modem. The STREAMS alternative is meant be used in cases
where performance and QoS issues dictate a more efficient transfer mechanism between protocol
layers. In addition it attempts to make maximum use of COTS networking protocol
implementations.

3.2.4.2 Diagram
Diagrams are provided for clarity throughout the sections of this paper. No one diagram will be
sufficient for explanatory purposes.

3.2.4.3 Theory of Operation
STREAMS provides the ability to plug/unplug protocol modules that provide efficient message
passing between modules, buffer management, and flow control. There are also existing
standards based on STREAMS that define network layer interfaces for link, network, and
transport. This allows the use of COTS networking components and allows the vendor to
concentrate on radio system development. The following sections address the instantiation of a
networking waveform that requires red side link processing in order to illustrate how STREAMS
would fit into the architecture.

3.2.4.3.1 Red Side Processing
Figure 1 shows a red side STREAMS based protocol stack after startup including relevant object
representations. The Domain Manager (DoM), Red Processor Device (RP Dev) and Security
Device (Sec Dev) and Object Request Broker (ORB) are shown. CORBA sits at the application
layer and interfaces to the stack through the sockets API. The routing daemon which contains the
routing protocols such as RIP, OSPF, DVMRP, etc also interfaces to the stack through the
sockets API. At the bottom of the stack are two drivers, one for Ethernet and one for the
INFOSEC. The Ethernet driver presents the Data Link Provider Interface (DLPI) interface to the
IP module. The INFOSEC driver implements the interface to the INFOSEC. The INFOSEC
driver does not present the DLPI interface itself because a link module may be pushed on top of
it that is sending to and receiving from a modem module. Therefore the driver must be more
generic. A separate DLPI module presents the DLPI interface to the IP module. As shown on

MSRC-5000SRD
Appendix D

D-3-90

the diagram, external IIOP traffic flows through the Ethernet and up the protocol stack to the
ORB or gets routed by the IP layer to the INFOSEC interface for transport to a Black Processor.
The IIOP traffic carries non-real time control and status information. Since there are no
waveforms running, there is no real time data flow.

Infosec Driver

DLPI Module DLPI Ethernet
Driver

IP Module

TCP Module

Sockets Module

Stream Head

Sockets API

CORBA
Routing Protos
and Net Apps

Stream Head

Sockets Module

UDP Module

Sockets API

IIOP
IIOP – Used for Control
of Objects Only Across
the Infosec Boundary

CORBA Based
Apps (e.g. DM)

User

Kernel

ORBSec Dev

DoM

RP Dev

Figure 1- Red Side (Single Processor) Stack After Startup
Figure 2 shows the stack at the beginning of waveform instantiation. The RP Dev has been
commanded by the Domain Manager to load (push) the link layer STREAMS module on top of
the security device. RP Dev also imparts any persistent configuration information to the module
at this point.

MSRC-5000SRD
Appendix D

D-3-91

Infosec Driver

DLPI Module DLPI Ethernet
Driver

IP Module

TCP Module

Sockets Module

Stream Head

Sockets API

CORBA
Routing Protos
and Net Apps

Stream Head

Sockets Module

UDP Module

Sockets API

CORBA Based
Apps (e.g. DM)

User

Kernel

DLPI Red Link
d l

ORBSec Dev

DoM

RP Dev

Infosec Clone
Device opened and
Red Link Module
pushed on top of it
by the Red
Processor Device
Obj

Figure 2 Red Side Stack Waveform Instantiation Step 1

Figure 3 shows the next step in the instantiation process. As part of the loading of the link layer
STREAMS module, RP Dev commands the module to be persistently linked under the IP
module. In addition an IP address is assigned to the interface. The interface can now be
configured as an IP routing gateway. Assuming that the waveform has been fully instantiated
and configured on the black side as well, the Radio System is ready to receive and transmit
networked traffic over the air.

MSRC-5000SRD
Appendix D

D-3-92

Infosec Driver

DLPI Module DLPI Ethernet
Driver

 IP Module

TCP Module

Sockets Module

Stream Head

Sockets API

CORBA
Routing Protos
and Net Apps

Stream Head

Sockets Module

UDP Module

Sockets API

CORBA Based
Apps (e.g. DM)

User

Kernel

DLPI Red Link
d l

Red Link
Module
persistently
linked under IP
by the Red
Processor
Device Object

ORBSec Dev

DoM

RP Dev

RF network
traffic only

IIOP traffic
for non-real
time control

Figure 3 Red Side Stack Waveform Instantiation Step 2

MSRC-5000SRD
Appendix D

D-3-93

3.2.4.3.2 Black Side Processing
Figure 4 shows a black side STREAMS based protocol stack after startup including relevant
object representations. The Black Processor Device (BP Dev), Security Device (Sec Dev),
Modem Device (Mod Dev), Modem Factory (Mod Fac) and ORB are shown. As on the red side
CORBA sits at the application layer and interfaces to the stack through the sockets API. The
routing daemon (optional) which contains the routing protocols such as RIP, OSPF, DVMRP, etc
also interfaces to the stack through the sockets API. At the bottom of the stack are two drivers,
one for the backplane and one for the INFOSEC. The INFOSEC and backplane drivers are
separate from the DLPI modules. As shown on the diagram, IIOP traffic flows between this
processor and other black processors and CORBA capable modems and can carry both non-
realtime and real time traffic. IIOP traffic through the INFOSEC carries non-real time control
and status information. Since there are no waveforms running, there is no real time data flow.

Infosec Driver

DLPI Module

IP Module

TCP Module

Sockets Module

Stream Head

Sockets API

CORBA
Routing Protos
and Net Apps

Stream Head

Sockets Module

UDP Module

Sockets API

IIOP – Used for Control
of Objects Only Across
the Infosec Boundary

IIOP

CORBA Based
Apps (e.g. DM)

User

Kernel

ORBBP Dev Sec Dev

DLPI Module
i

Backplane Driver

Mod Dev
Mod Fac

Figure 4 Black Side Stack After Startup
Figure 5 shows the stack at the beginning of waveform instantiation. The BP Dev has been
commanded by the Domain Manager to load the STREAMS bridge multiplexor and link the

MSRC-5000SRD
Appendix D

D-3-94

backplane and security device drivers under it. The BP Dev imparts persistent configuration
information to the multiplexor at this point.

Infosec Driver

DLPI Module

IP Module

TCP Module

Sockets Module

Stream Head

Sockets API

CORBA
Routing Protos
and Net Apps

Stream Head

Sockets Module

UDP Module

Sockets API

CORBA Based
Apps (e.g. DM)

User

Kernel

ORBBP Dev Sec Dev

DLPI Module
i

Backplane Driver

Mod Dev

Backplane Driver

Bridge Multiplexor

Mod Fac

Infosec and Backplane Clone
Devices opened and
persistently linked under a
Bridge Multiplexor by the
Black Processor Device
Object

Stream Head

Figure 5 Black Side Stack Waveform Instantiation Step 1
Figure 6 shows the next step in the instantiation process. The Domain Manager commands the
modem factory to create a modem adapter. The modem adapter exports a Modem Networking-
API as its client interface. The server side of the adapter translates between the STREAMS API
and the operations as defined in the Networking-API. This applies to non-real time control only.
Real-Time (in-band) control and data flow through the bridge.

MSRC-5000SRD
Appendix D

D-3-95

Modem Adapter (used for non-real time control)

Infosec Driver

DLPI Module

IP Module

TCP Module

Sockets Module

Stream Head

Sockets API

CORBA
Routing Protos
and Net Apps

Stream Head

Sockets Module

UDP Module

Sockets API

To/From
Infosec (IIOP –

Used for
Control of

Objects Only)

CORBA Based
Apps

User

Kernel

ORBBP Dev Sec Dev

DLPI Module
i

Backplane Driver

Mod Dev

Backplane Driver

Bridge Multiplexor

Mod Fac Mod Adap

Stream Head

STREAMS API

Waveform
datastream

and real
time control

trafficTo/From other
Black

Processors and
CORBA
capable

modems (IIOP)

To/From
Modem

To/From
Infosec

The Modem
Factory (Mod Fac)
has created the
Modem Adapter
which presents a
Modem NAPI and
interfaces with the
stream to the
modem through the
STREAMS API.

Figure 6 Black Side Stack Waveform Instantiation Step 2

3.2.4.4 OE
STREAMS based protocols depend on the existence of a STREAMS environment. This can be
provided by an OS with a native STREAMS implementation or by a third party STREAMS
environment. STREAMS is not restricted to any particular OS or OS type. In fact STREAMS
can exist with no OS at all if you want to extend the STREAMS interface to the modem.

MSRC-5000SRD
Appendix D

D-3-96

3.2.4.5 Layer Applicability
STREAMS is applicable to all layers (Modem, Link, Network (3A, 3B), Transport). In addition
STREAMS has applicability for the Security interface.

3.2.4.6 FOM Analysis

3.2.4.6.1 Waveform Portability
3.2.4.6.1.1 Porting Activity Identification
This section identifies the porting steps required for a given transfer mechanism alternative to be
ported given certain stimuli.

3.2.4.6.1.1.1 Porting Stimuli Definitions

Stimulus Description Classification
Environment Change:Different Processor Waveform must be ported to a different

processor
Non-recurring

Environment Change:Different OS Waveform must be moved to a different OS Non-recurring
Environment Change:Different Bus Waveform must be moved to a different bus

structure
Non-recurring

Protocol Standard Migration:COTS Stack Waveform requires new capabilities as reflected
in new protocol standards (e.g. implementation
of IP RFCs). The networking implementation
uses COTS stack components.

Non-recurring

Protocol Standard Migration:Custom
Stack

Waveform requires new capabilities as reflected
in new protocol standards (e.g. implementation
of IP RFCs). The networking implementation
uses custom stack components.

Non-recurring

New Transport Protocol: COTS Stack A new transport protocol must be added (e.g. to
support reliable multicast). The networking
implementation uses COTS stack components.

Non-recurring

New Transport Protocol: Custom Stack A new transport protocol must be added (e.g. to
support reliable multicast). The networking
implementation uses custom stack components

Non-recurring

3.2.4.6.1.1.2 Porting Step Definitions

MSRC-5000SRD
Appendix D

D-3-97

Porting Step Description Effort Level
Recompilation Recompilation of networking part of waveform. Minimal
Thin Layer Port Port of OS/Kernel isolation layer Moderate
Bus Layer Port Port of bus communication layer Moderate
Mechanism Port Port of networking functionality to the chosen implementation

mechanism (i.e. CORBA, STREAMS. Etc)
Extensive

Application Port Implementation in a particular environment requires porting of one
or more applications. For example a custom socket implementation
may invalidate the use of select() in applications.

Minimal-Extensive

Capability Extension Requires the extension of existing software to add new capabilities Moderate-Extensive
OS Rebuild Requires rebuilding the OS. Minimal

3.2.4.6.1.1.3 Porting Steps Required for a Given Stimulus

Environment Change (non-recurring) Protocol Standard Migration
(Non-recurring)

New Transport Protocol
(Non-recurring)

Different
Processor

Different
OS

Different
Bus

COTS Stack Custom Stack COTS Stack Custom Stack

Recompilation.
This may
require a
translation
module as
discussed in
6.6.2.

Thin Layer
Port 1,
OS Rebuild 1

Bus Layer
Port,
OS Rebuild

Recompilation
2 or Capability
Extension

Capability
Extension

Recompilatio
n 2 or
Capability
Extension

Recompilation
2 or Capability
Extension

1. For OSes which do not have either native or third party STREAMS support (approx 35 C
functions).
2. If capability extension is available commercially.
3.2.4.6.1.2 Impacts to CF caused by using the transfer mechanism.
The impacts to the CF are minimal and amount to some additional profile definition. In
particular to identify a module as a STREAMS module and identify any configuration
information for the module that belongs in the profile.

3.2.4.6.2 Ability to support networking/Non-Networking Waveforms
3.2.4.6.2.1 Supporting existing networking waveforms.
STREAMS is able to support legacy networking waveforms such as SINCGARS SIP and EPLRS.
For SINCGARS SIP the layer 3b and 2 functionality of 188-220 would be encapsulated in a
STREAMS module that would present DLPI as its interface. Figures 1-6 show how the
networking portion of SINCGARS SIP would be instantiated. In the case of EPLRS the Black
Side Link Layer would be a STREAMS module that also would present DLPI as its interface.
3.2.4.6.2.2 Supporting existing non-networking waveforms.
The figure below illustrates how STREAMS is integrated with legacy non-networking waveforms.
The Domain Manager invokes the Security Factory. The Security Factory opens the clone

MSRC-5000SRD
Appendix D

D-3-98

device for the security driver, creates a security adapter object and passes the file descriptor of
the open stream to the adapter. A waveform such as FM LOS can now be run by creating an
object that interfaces to an input device such as an audio device and linking the audio object
with the security adapter.

Security Adapter

DLPI Module DLPI Ethernet
Driver

 IP Module

TCP Module

Sockets Module

Stream Head

Sockets API

CORBA
Routing Protos
and Net Apps

Stream Head

Sockets Module

UDP Module

Sockets API

CORBA Based
Apps (e.g. DM)

User

Kernel
Infosec Driver

ORBSec Dev

DoM

RP Dev

IIOP traffic
for non-real
time control

Stream Head

STREAMS API

Sec Fac Sec Adap

3.2.4.6.2.3 Supporting future networking waveforms.
STREAMS can support future networking waveforms by the addition of STREAMS modules that
support those waveforms.
3.2.4.6.2.4 Supporting future non-networking waveforms.
Future non-networking waveforms would be supported identically to legacy non-networking
waveforms.

3.2.4.6.3 Performance
The following tables quantify in relative terms the steps necessary for a packet to traverse the
protocol stack for a given stack implementation. Protocol specific processing and routing are not
included as these steps would be common to all stack implementations. There has been concern
that poor performance exhibited in certain STREAMS implementations is a result of inherent

MSRC-5000SRD
Appendix D

D-3-99

STREAMS limitations. Investigation into this matter proves this not to be the case. The poor
performance of some STREAMS implementations can be attributed to the implementations
themselves and is not an inherent limitation of STREAMS.
3.2.4.6.3.1 Transfer Mechanism Packet Flow

3.2.4.6.3.1.1 Unicast Packet from Ethernet to Modem

Layers and Layer Transitions Quantums
Ethernet Link Layer allocate packet buffer + strip ethernet header
Transition to IP Network Layer
IP Network Layer
Transition to Link Module (same
processor as network module)
Transition to Link Module (different
processor from network module)

prepend inter-processor transport header + copy packet into transport
buffer + free packet buffer + strip inter-processor transport header +
allocate packet buffer + copy into packet buffer

Link Module (DLPI) prepend link header
Transition to Modem Module (same
processor as link module)
Transition to Modem Module (different
processor from link module)

prepend inter-processor transport header + copy packet into transport
buffer + free packet buffer + strip inter-processor transport header +
allocate packet buffer + copy into packet buffer

Modem Module free packet buffer

3.2.4.6.3.1.2 Multicast Packet from Ethernet to Modem (3 channels)

Layers and Layer Transitions Quantums
Ethernet Link Layer allocate packet buffer + strip ethernet header
Transition to IP Network Layer
IP Network Layer Increment reference count on packet for 3 channels (no copies)
Transition to Link Module (same
processor as network module)
Transition to Link Module (different
processor from network module)

(prepend inter-processor transport header + copy packet into transport
buffer) * 3 + free packet buffer + (strip inter-processor transport
header + allocate packet buffer + copy into packet buffer) * 3

Link Module (DLPI) (allocate link header buffer + prepend link header) * 3
Transition to Modem Module (same
processor as link module)
Transition to Modem Module (different
processor from link module)

(prepend inter-processor transport header + copy packet into transport
buffer + free link header buffer) * 3 + free packet buffer + (strip inter-
processor transport header + allocate packet buffer + copy into packet
buffer) * 3

Modem Module free packet buffer * 3

3.2.4.6.3.1.3 Message from Application to Modem using Sockets and TCP

MSRC-5000SRD
Appendix D

D-3-100

Layers and Layer Transitions Quantums
Stream Head allocate buffer (s) + copy message to buffer(s)
Transition to Sockets Module
Sockets Module Translate socket semantics to TPI semantics
Transition to TCP Module
TCP Module (TPI) Split message Increment reference count of buffer chain + prepend TCP

header
Transition to IP Network Layer
IP Network Layer
Transition to Link Module (same
processor as network module)
Transition to Link Module (different
processor from network module)

prepend inter-processor transport header + copy packet into transport
buffer + free packet buffer

Link Module (same processor as
network module)

prepend link header

Transition to Modem Module (same
processor as link module)
Transition to Modem Module (different
processor from link module)

prepend inter-processor transport header + copy packet into transport
buffer + free packet buffer

Modem Module free packet buffer

3.2.4.6.3.2 Possible QoS impacts
The availability of priority banding in STREAMS may aid in implementing QoS policies. It does
not appear to be in much use at this time.

3.2.4.6.4 Extensibility
3.2.4.6.4.1 Does the protocol transfer mechanism support addition of newly defined or extension

to existing protocol layers?
STREAMS allows extension of protocols and definition of new protocols. Existing examples are
Mentat's and Spider's products. Mentat has a TCP/IP stack that supports both IPv4 and IPv6.
They continue to incorporate RFCs into the IPv6 module. In addition they supply an Xpress
Transport Protocol module (XTP) that can be pushed on top of IP in place of TCP. Spider offers
an SS7 stack and a Q3 Telecom stack.

3.2.4.6.5 Construct/Deconstruct Protocol Stacks
3.2.4.6.5.1 Ability to add/remove layers without OS rebuild
The ability to add remove the link and modem layers was shown in the theory of operation.
Figure 8 shows an XTP module pushed on top of IP as an example of a transport layer that can
be added without and OS rebuild.

MSRC-5000SRD
Appendix D

D-3-101

Infosec Driver

DLPI Module DLPI Ethernet
Driver

IP Module

TCP Module

Sockets Module

Stream Head

Sockets API

CORBA
Routing Protos
and Net Apps

Stream Head

Sockets Module

UDP Module

Sockets API

CORBA Based
Apps (e.g. DM)

User

Kernel

XTP Module

Sockets Module

Stream Head

Sockets API

Figure 8 XTP Transport Pushed on Top of IP
The network layer (IP) could be replaced just as any other STREAMS module with the exception
that the IP layer is used by multiple applications and interfaces that replacing it would entail
shutting down all waveforms that use it.
Application addition and deletion are handled by the CF and is outside of STREAMS.
3.2.4.6.5.2 Address ability to distribute protocol layers across address spaces
This is essentially addressed in x.6.6.2.
3.2.4.6.5.3 Dynamic stack construction/destruction
This question is addressed in x.6.5.1. Stack construction/destruction can occur while other
waveforms are running.

3.2.4.6.6 Component Interoperability
3.2.4.6.6.1 Address how components can be used between waveforms
The STREAMS paradigm is that the internals of any STREAMS module is unknown to modules
above or below it in the stream. Only the interface of the module below is known. This allows
the concept of different transport or link layers to run on top of or below IP for example. Based
on the diagrams shown previously it can be seen that waveforms that have common elements
such as a common link layer can be plugged in on top of or below waveform specific elements.
3.2.4.6.6.2 Address how components interoperate across differing processors
This alternative uses CORBA for non-realtime control. Interoperation across differing
processors is handled by the CF interfaces and CORBA in this case except for the case were the
devices are not CORBA capable. For networking STREAMS modules are used to handle the
data STREAM. As shown in previous diagrams, STREAMS drivers are used to communicate
with the INFOSEC. These drivers can ensure interoperability between themselves via the
equivalent of marshalling. As shown in Figure 9 another method would be to push a translation
module on top of the driver to perform this function.

MSRC-5000SRD
Appendix D

D-3-102

Infosec Driver

DLPI Module DLPI Ethernet
Driver

 IP Module

TCP Module

Sockets Module

Stream Head

Sockets API

CORBA
Routing Protos
and Net Apps

Stream Head

Sockets Module

UDP Module

Sockets API

CORBA Based
Apps (e.g. DM)

User

Kernel

DLPI Red Link
d l

Translation
Module for
Black/Red
Interoperation.

ORBSec Dev

DoM

RP Dev

RF network
traffic only

IIOP traffic
for non-real
time control

Trans. Module

Figure 9 Red Side Stack with Translation Module

3.2.4.6.7 Cost
The following is some information from the Solaris Operating System to provide a frame of
reference for the size of protocol modules in general and STREAMS modules in particular. The
following table was generated by applying a byte to line of code byte estimate of 10-20.

Protocol Module Size in bytes Approx. SLOC
IP 122227 6k-12 k
TCP 58044 2.9k-5.8k
UDP 8676 0.4k - 0.8k
ICMP 9488 0.45k – 0.9k
ARP 20151 1k – 2k
Sockets Module 35524 1.75k – 3.5k
Hme network interface 48058 2.4k-4.8 k

MSRC-5000SRD
Appendix D

D-3-103

3.2.4.6.7.1 Implementation Cost
Reduces level of custom development because COTS stack implementations are available for
STREAMS. The implementation cost in most cases would be limited to link and modem.
Implementation of transport layers will happen less often. Commercial vendors offer the source
code for STREAMS modules including link layer skeletons allow for reuse of basic functions in
developed modules.
An investigation of one vendor’s license fees for STREAMS yielded the following information:

Source Code License Per Unit Cost Per 10,000 Units Cost
$75,000 $400 $25

3.2.4.6.7.2 Maintenance Cost
• See Porting Analysis:Migration of protocol standards.
3.2.4.6.7.3 Porting Cost
• See Porting Analysis: .Environment Change

3.2.4.6.8 Commercial Acceptance
3.2.4.6.8.1 Current Commercial Acceptance

3.2.4.6.8.1.1 STREAMS Standards
The OpenGroup publishes the following STREAMS based standards:
DLPI, Network Provider Interface (NPI) and Transport Provider Interface (TPI)

3.2.4.6.8.1.2 STREAMS Vendors

3.2.4.6.8.1.2.1 Mentat
Mentat specializes in providing networking products. Their STREAMS based products include:

• A TCP/IP stack

• A portable STREAMS environment

• eXpress Transport Protocol (XTP)

• SkyX Gateway which provides high-speed Internet access over satellites.
Their customer base includes Apple, Compaq, HP, IBM, Lucent, Motorola, Novell, Sony, Sun,
Wind River and Xerox.

3.2.4.6.8.1.2.2 Spider
Spider specializes in providing STREAMS based products. These include:

• A STREAMS environment that can run on Unix, RTOSes or with no OS at all.

• A Distributed STREAMS Function (DSF)

• A Full TCP/IP stack

MSRC-5000SRD
Appendix D

D-3-104

• An OSI stack (layers 1-4)

• A Q3 Telecom Stack

• X.25, PPP, ISDN, Frame Relay, and CMIP and SS7 products
Their customer base includes Motorola, Lucent, Alcatel, Nortel, Ericsson, IBM, Hewlett
Packard, Sun Microsystems, ICL, NEC, Compaq, Artesyn, PTI, SBE, BAe Sema, Raytheon,
Tandem and Stratus.

3.2.4.6.8.1.2.3 StreamSoft
StreamSoft specializes in providing LAN-WAN connectivity products. Their STREAMS products
include:

• A Portable STREAMS environment.

• A Full TCP/IP stack

• X.25, PPP and Frame Relay products
Their customer base includes QWEST Communications, Nextel communications, Cable and
Wireless, Ericsson, Nokia, Marcatel, Tellabs and Servei de Telecomunicacions d'Andorra.

3.2.4.6.8.1.2.4 UCONx
UCONx specializes in providing serial connectivity products. Their STREAMS products include:

• A STREAMS-based real-time operating environment

• Various serial protocols

• Frame Relay

3.2.4.6.8.1.2.5 Gcom
Gcom provides connectivity products. STREAMS bases products include:
Frame Relay, X.25, SDLC/HDLC, LAPB, LAPD, LLC

3.2.4.6.8.1.2.6 Adax
Adax offers three basic product lines. The advanced Protocol Controllers (APC) support data
link layer and protocol functions. The Advanced Network Controllers (ANC) operate at the
physical layer. The advanced Protocol Software (APS) products are implemented at both the
network and data link layers.
Internally, standard AT&T UNIX Streams-based intermodular communications support
interoperability among Adax products. This means that, where it is logical, products at any layer
can be combined with products at the other layers to build a fully functional communications
solution.
The Advanced Protocol Software products include the drivers for each APC card and the
software modules that support Internet connectivity and general WAN access via ATM, Frame
Relay, PPP, X.25, SSCF/SSCOP, SS7 MTP-2, LAPB/D, or ISDN (Q.931) on Windows NT or

MSRC-5000SRD
Appendix D

D-3-105

UNIX. All drivers implement a STREAMS-based DLPI programming interface, while the
software modules are all STREAMS-based, pushable modules that can be seamlessly
interconnected for flexible and efficient protocol stack construction.
Adax’s customer base includes Lucent, Ericcson, Direct Connect, Novell, Sun, IBM, Trillium,
HP and Hughes Software Systems.

3.2.4.6.8.1.2.7 Litton
Uses STREAMS as the host interface for TCIM modules.

3.2.4.6.8.1.3 Operating Systems with Native STREAMS
Solaris, HP-UX, Apple Mac OS, Concurrent PowerMAX OS, Sony NEWS and any ATT SVR4
compatible OS

3.2.4.6.8.1.4 Operating Systems Third Party STREAMS
VxWorks, Lynx, Linux, Windows NT, pSOS, QNX, VRTX, RTEMS
3.2.4.6.8.2 Future Commercial Acceptance
As technology migrates it is likely that some other standard will gain acceptance. Currently for
commercial high bandwidth networking there are implementations of IP routing in hardware.

3.2.4.6.9 Security
3.2.4.6.9.1 Can support Local/Global Address Space
STREAMS supports multi-homing and parallel stacks. Figure 10 shows a local/global stack
implementation using STREAMS.

MSRC-5000SRD
Appendix D

D-3-106

Infosec Driver

DLPI Module DLPI Ethernet
Driver

IP Module

TCP Module

Sockets Module

Stream Head

Sockets API

CORBA
Routing Protos
and Net Apps

Stream Head

Sockets Module

UDP Module

Sockets API

Local Stack - IIOP Used
for Control of Objects
Only Across the Infosec

CORBA Based
Apps (e.g. DM)

DLPI Ethernet
Driver

IP Module

Sockets Module

Routing Protos
and Net Apps

Stream Head

UDP Module

Sockets API

Global Stack – Data
flows between RF and
wireline

Figure 10 Two Stacks for Separate Local/Global Addressing
3.2.4.6.9.2 Supports Infosec requirements
This is a binary. Must identify the Infosec requirements.
3.2.4.6.9.3 How does transfer mechanism handle control/status, header and plain text bypass?

3.2.4.6.9.3.1 Non-Realtime Control/Status
IIOP is passed through the INFOSEC clear.

3.2.4.6.9.3.2 Header Bypass (Realtime Control/Status)
STREAMS identifies the following message blocks:

• M_PROTO – This identifies the information as protocol control/status

• M_PCPROTO – This identifies the information as high priority protocol control/status

• M_DATA – This identified the information as data.
Essentially the M_PROTO and M_PCPROTO blocks would be passed clear and the M_DATA
blocks would be encrypted/decrypted.
The logical device for this interface is different than for the Non-real-time control interface.

3.2.4.6.9.3.3 Plain Text Bypass
The plain text bypass for the waveform is implemented in the INFOSEC.

MSRC-5000SRD
Appendix D

D-3-107

3.2.4.6.10 Ability to Adapt to Commercial Trends
Identify how the given transfer mechanism could support moving to other implementations.

Unknown.

	Cover
	INTRODUCTION
	NETWORKING OVERVIEW
	NETWORKING WORKING GROUP CHARTER
	NETWORKING WORKING GROUP PROBLEM STATEMENT
	NETWORKING WORKING GROUP ANALYSIS PROCESS
	NETWORKING WORKING GROUP DECISION PROCESS
	NETWORKING WORKING GROUP TOP-LEVEL DEFINITIONS
	NETWORKING WORKING GROUP ANALYSIS
	Criteria Derivation
	Networking API Service Definition Analysis
	Transfer Mechanism Analysis
	Additional Analysis Information

	SUPPLEMENTAL DATA ON OPTIONS CONSIDERED
	NETWORKING API SERVICE DEFINITION OPTIONS
	Option 1 – Small Networking API Service Definition Using Name/Value Pairs
	Option 2 – Super Networking API
	Option 3 - Commercial Model Networking API Service Definition
	Option 4 - Commercial Model with Inheritance Networking API Service Definition
	Option 4 - GloMo Rooftop API based Networking API Service Definition

	NETWORKING API TRANSFER MECHANISM OPTIONS
	Option 1 - CORBA, CORBA, CORBA, CORBA
	Option 2- CORBA, CORBA, Non-CORBA, Non-CORBA
	Option 3 – CORBA, CORBA, CORBA via reference, CORBA via reference
	Option 4 – CORBA, CORBA, STREAMS, STREAMS

